用户名: 密码: 验证码:
Nitrogen input, 15N balance and mineral N dynamics in a rice¨Cwheat rotation in southwest China
详细信息    查看全文
文摘
A field experiment and farm survey were conducted to test nitrogen (N) inputs, 15N-labelled fertilizer balance and mineral N dynamics of a rice–wheat rotation in southwest China. Total N input in one rice–wheat cycle averaged about 448 kg N ha−1, of which inorganic fertilizer accounted for 63 % of the total. The effects of good N management strategies on N cycling were clear: an optimized N treatment with a 27 % reduction in total N fertilizer input over the rotation decreased apparent N loss by 52 % and increased production (sum of grain yield of rice and wheat) compared with farmers’ traditional practice. In the 15N-labelled fertilizer experiment, an optimized N treatment led to significantly lower 15N losses than farmers’ traditional practice; N loss mainly occurred in the rice growing season, which accounted for 82 % and 67 % of the total loss from the rotation in farmers’ fields and the optimized N treatment, respectively. After the wheat harvest, accumulated soil mineral N ranged from 42 to 115 kg ha−1 in farmers’ fields, of which the extractable soil NO3 −–N accounted for 63 % . However, flooding soil for rice production significantly reduced accumulated mineral N after the wheat harvest: in the 15N experiment, farmers’ practice led to considerable accumulation of mineral N after the wheat harvest (125 kg ha−1), of which 69 % was subsequently lost after 13 days of flooding. Results from this study indicate the importance of N management in the wheat-growing season, which affects N dynamics and N losses significantly in the following rice season. Integrated N management should be adopted for rice–wheat rotations in order to achieve a better N recovery efficiency and lower N loss.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700