用户名: 密码: 验证码:
Influence of structure and atom sites on Sn-based anode materials for lithium ion batteries: a first-principle study
详细信息    查看全文
  • 作者:Zhaowen Huang (1)
    Shejun Hu (1) (2)
    Xianhua Hou (1)
    Qiang Ru (1)
    Lingzhi Zhao (3)
  • 关键词:Anode structure and atom sites ; Sn ; based anode material ; Lithium ion battery ; First ; principle study
  • 刊名:Chinese Science Bulletin
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:59
  • 期:13
  • 页码:1459-1467
  • 全文大小:1,386 KB
  • 参考文献:1. Scrosati B (1995) Challenge of portable power. Nature 373:557-58 CrossRef
    2. Megahed S, Scrosati B (1994) Lithium–ion rechargeable batteries. J Power Sour 51:79-04 CrossRef
    3. Galobardes F, Wang C, Madou M (2006) Investigation on the solid electrolyte interface formed on pyrolyzed photoresist carbon anodes for C-MEMS lithium–ion batteries. Diam Rel Mat 15:1930-934 CrossRef
    4. Nishikawa K, Fukunaka Y, Sakka T et al (2007) In situ measurement of lithium mass transfer during charging and discharging of a Ni–Sn alloy electrode. J Power Sour 174:668-72 CrossRef
    5. Ahn JH, Wang GX, Yao J et al (2003) Tin-based composite materials as anode materials for Li–ion batteries. J Power Sour 119-21:45-9 CrossRef
    6. Hou XH, Hu SJ, Li WS et al (2008) Plane-wave pseudo-potential method of Li inserted as anode material in Sn–Ni alloy. Rare Metal Mater Eng 37:827-30 (in Chinese)
    7. Wang K, He XM, Wang L et al (2006) Preparation of Cu6Sn5-encapsulated carbon microsphere anode materials for Li–ion batteries by carbothermal reduction of oxides. J Electrochem Soc 153:1859-862 CrossRef
    8. Ke FS, Huang L, Wei HB et al (2007) Fabrication and properties of macroporous tin–cobalt alloy film electrodes for lithium–ion batteries. J Power Sour 170:450-55 CrossRef
    9. Kitamura S, Wang L, Tanase S et al (2003) Multilayered Sn/Zn/Zn/Cu alloy film electrode prepared by electroplating method for lithium secondary batteries. Electrochemistry 71:1070-072
    10. Shi SQ, Ouyang CY, Xiong ZH et al (2005) First-principles investigation of the structural, magnetic, and electronic properties of olivine LiFePO4. Phys Rev B 71:144404-44409 CrossRef
    11. Hou XH, Hu SJ, Li WS et al (2008) The investigation of lithiation/delithiation mechanism in lithium–tin alloy for anode materials. Acta Phys Sin 57:2374-379
    12. Huang ZW, Hu SJ, Hou XH et al (2009) Dead lithium phase investigation of Sn–Zn alloy as anode material for lithium ion battery. Chin Sci Bull 54:1003-008 CrossRef
    13. Shi SQ, Wang DS, Meng S et al (2003) First-principles studies of cation-doped spinel LiMn2O4 for lithium ion batteries. Phys Rev B 67:115130-15135 CrossRef
    14. Huang ZW, Hu SJ, Hou XH et al (2010) First-principles study on phase Al0.8Ni3Sn0.2 in Sn–Ni–Al alloy as anode material for lithium ion battery. Chin Phys B 19:117101-17107 CrossRef
    15. Hou XH, Hu SJ, Li WS et al (2008) Ab inito study of the effects of Ag/Mn doping on the electronic structure of LiFePO4. Chin Sci Bull 53:1763-767 CrossRef
    16. Ouyang XF, Lei ML, Shi SQ et al (2009) First-principles studies on surface electronic structure and stability of LiFePO4. J Alloys Compd 476:462-65 CrossRef
    17. Nie ZX, Ouyang CY, Chen JZ et al (2010) First principles study of Jahn–Teller effects in Li / x MnPO4. Solid State Commun 150:40-4 CrossRef
    18. Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61:689-46 CrossRef
    19. Dreizler RM, Gross EKU (1990) Density functional theory. Springer, Berlin CrossRef
    20. Becke AD (1988) Density functional exchange energy approximation with correct asymptotic. Phys Rev A 38:3098-100 CrossRef
    21. Perdew JP, Chevary JA, Vosko SH et al (1992) Atoms, molecules, solids, and surfaces—applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671-687 CrossRef
    22. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892-895 CrossRef
    23. Kim YL, Lee HY, Jang SW et al (2003) Nanostructured Ni3Sn2 thin films as anodes for thin film rechargeable lithium batteries. Solid State Ionics 160:235-40 CrossRef
    24. Nam DH, Kim RH, Han DW et al (2012) Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li ion batteries. Electrochim Acta 66:126-32 CrossRef
  • 作者单位:Zhaowen Huang (1)
    Shejun Hu (1) (2)
    Xianhua Hou (1)
    Qiang Ru (1)
    Lingzhi Zhao (3)

    1. Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
    2. Engineering Research Center of Materials and Technology for Electrochemical Energy Storage, Ministry of Education, Guangzhou, 510006, China
    3. Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou, 510631, China
  • ISSN:1861-9541
文摘
To understand the influence of structure and atom sites on the electrochemical properties of Sn-based anode materials, the lithium intercalation–deintercalation mechanisms into SnNi2Cu and SnNiCu2 phases were studied using the first-principle plane wave pseudo-potential method. Calculation results showed that both SnNi2Cu and SnNiCu2 were unsuitable anode materials for lithium ion batteries. The Sn-based anode structure related to the number of interstitial sites, theoretical specific capacity, and volume expansion ratio. Different atom sites led to different forces at interstitial sites, resulting in variations in formation energy, density of states, and hybrid orbital types. In order to validate the calculated model, the SnNi2Cu alloy anode material was synthesized through a chemical reduction-codeposition approach. Experimental results proved that the theoretical design was reasonable. Consequently, when selecting Sn-based alloy anodes, attention should be paid to maximizing the number of interstitial sites and distributing atoms reasonably to minimize forces at these sites and facilitate the intercalation and deintercalation of lithium ion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700