用户名: 密码: 验证码:
Repeated horizontal transfers of four DNA transposons in invertebrates and bats
详细信息    查看全文
  • 作者:Zhou Tang (1)
    Hua-Hao Zhang (2)
    Ke Huang (3)
    Xiao-Gu Zhang (2)
    Min-Jin Han (1)
    Ze Zhang (1)

    1. School of Life Sciences
    ; Chongqing University ; Chongqing ; 400044 ; China
    2. College of Pharmacy and Life Science
    ; Jiujiang University ; Jiujiang ; 332000 ; China
    3. College of Forestry and Life Science
    ; Chongqing University of Sciences and Arts ; Yongchuan ; Chongqing ; 40216 ; China
  • 关键词:Horizontal transfer ; CACTA transposons ; Mammals ; Recent activity
  • 刊名:Mobile DNA
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:6
  • 期:1
  • 全文大小:1,892 KB
  • 参考文献:1. Feschotte C, Pritham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet. 2007;41:331鈥?8. CrossRef
    2. Jurka J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 2000;16:418鈥?0. CrossRef
    3. Han MJ, Xu HE, Zhang HH, Feschotte C, Zhang Z. Spy: a new group of eukaryotic DNA transposons without target site duplications. Genome Biol Evol. 2014;6:1748鈥?7. CrossRef
    4. Schaack S, Gilbert C, Feschotte C. Promiscuous DNA: horizontal transfer oftransposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol. 2010;25:537鈥?6. CrossRef
    5. Hartl DL, Lohe AR, Lozovskaya ER. Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu Rev Genet. 1997;31:337鈥?8. CrossRef
    6. Roberston HM. Evolution of DNA transposons in eukaryotes. In: Craig NL, Craigie M, Lambowitz A, editors. Mobile DNA II. Herndon, VA: ASM; 2002. p. 1093鈥?10.
    7. Kidwell MG. Horizontal transfer of / P elements and other short inverted repeat transposons. Genetica. 1992;86:275鈥?6. CrossRef
    8. Silva JC, Loreto EL, Clark JB. Factors that affect the horizontal transfer of transposable elements. Curr Issues Mol Biol. 2004;6:57鈥?1.
    9. Daniels SB, Peterson KR, Strausbaugh LD, Kidwell MG, Chovnick A. Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics. 1990;124:339鈥?5.
    10. Wallau GL, Ortiz MF, Loreto EL. Horizontal transposon transfer in eukarya: detection, bias, and perspectives. Genome Biol Evol. 2012;4:689鈥?9. CrossRef
    11. Capy P, Bazin C, Higuet D, Langin T. Dynamics and evolution of transposable elements (Molecular Biology Intelligence Unit). New York: Springer; 1998.
    12. Niehuis O, Hartig G, Grath S, Pohl H, Lehmann J, Tafer H, et al. Genomic and morphological evidence converge to resolve the enigma of Strepsiptera. Curr Biol. 2012;22:1309鈥?3. CrossRef
    13. Lavoie CA, Platt 2nd RN, Novick PA, Counterman BA, Ray DA. Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera. Mob DNA. 2013;4:21. CrossRef
    14. Hedges SB, Dudley J, Kumar S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics. 2006;22:2971鈥?. CrossRef
    15. Stadelmann B, Lin LK, Kunz TH, Ruedi M. Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Mol Phylogenet Evol. 2007;43:32鈥?8. CrossRef
    16. Zhang HH, Shen YH, Xu HE, Liang HY, Han MJ, Zhang Z. A novel hAT element in Bombyx mori and Rhodnius prolixus: its relationship with miniature inverted repeat transposable elements (MITEs) and horizontal transfer. Insect Mol Biol. 2013;22:584鈥?6. CrossRef
    17. Lack JB, Van Den Bussche RA. Identifying the confounding factors in resolving phylogenetic relationships in Vespertilionidae. J Mammal. 2010;91:1435鈥?8. CrossRef
    18. Moreno-Vazquez S, Ning J, Meyers BC. hATpin, afamily of MITE-like hAT mobile elements conserved in diverse plant species that forms highly stable secondary structures. Plant Mol Biol. 2005;58:869鈥?6. CrossRef
    19. Tu Z. Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti. Mol Biol Evol. 2000;17:1313鈥?5. CrossRef
    20. Arensburger P, Hice RH, Zhou L, Smith RC, Tom AC, Wright JA, et al. Phylogenetic and functional characterization of the hAT transposon superfamily. Genetics. 2011;188:45鈥?7. CrossRef
    21. Datzmann T, von Helversen O, Mayer F. Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia). BMC Evol Biol. 2010;10:165. CrossRef
    22. Yang G, Nagel DH, Feschotte C, Hancock CN, Wessler SR. Tuned for transposition: molecular determinants underlying the hyperactivity of a Stowaway MITE. Science. 2009;325:1391鈥?. CrossRef
    23. DeMarco R, Venancio TM, Verjovski-Almeida S. SmTRC1, a novel Schistosoma mansoni DNA transposon, discloses new families of animal and fungi transposons belonging to the CACTA superfamily. BMC Evol Biol. 2006;6:89. CrossRef
    24. Volff JN. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays. 2006;28:913鈥?2. CrossRef
    25. Loreto EL, Carareto CM, Capy P. Revisiting horizontal transfer of transposable elements in Drosophila. Heredity. 2008;100:545鈥?4. CrossRef
    26. Gilbert C, Schaack S, Pace II JK, Brindley PJ, Feschotte C. A role for host parasite interactions in the horizontal transfer of transposons across phyla. Nature. 2010;464:1347鈥?0. CrossRef
    27. Zhang HH, Xu HE, Shen YH, Han MJ, Zhang Z. The origin and evolution of six miniature inverted-repeat transposable elements in / Bombyx mori and / Rhodnius prolixus. Genome Biol Evol. 2013;5:2020鈥?1. CrossRef
    28. Novick P, Smith J, Ray D, Boissinot S. Independent and parallel lateral transfer of DNA transposons in tetrapod genomes. Gene. 2010;449:85鈥?4. CrossRef
    29. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860鈥?21. CrossRef
    30. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420:520鈥?2. CrossRef
    31. Pace JK, Feschotte C, Feschotte C. The evolutionary history of human DNA transposons: Evidence for intense activity in the primate lineage. Genome Res. 2007;17:422鈥?2. CrossRef
    32. Ray DA, Pagan HJ, Thompson ML, Stevens RD. Bats with hATs: evidence for recent DNA transposon activity in genus Myotis. Mol Biol Evol. 2007;24:632鈥?. CrossRef
    33. Ray DA, Feschotte C, Pagan HJ, Smith JD, Pritham EJ, Arensburger P, et al. Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. Genome Res. 2008;18:717鈥?8. CrossRef
    34. Pag谩n HJ, Macas J, Nov谩k P, McCulloch ES, Stevens RD, Ray DA. Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats. Genome Biol Evol. 2012;4:575鈥?5. CrossRef
    35. Thomas J, Schaack S, Pritham EJ. Pervasive horizontal transfer of rolling-circle transposons among animals. Genome Biol Evol. 2010;2:656鈥?4. CrossRef
    36. Simmons NB. Order chiroptera. In: Wilson DE, Reeder DM, editors. Mammal species of the world. 3rd ed. Johns Hopkins University; 2005. p.312-529.
    37. Kathirithamby J. Review of the order Strepsiptera. Syst Ent. 1989;14:41鈥?2. CrossRef
    38. Kathirithamby J. Host-parasitoid associations in Strepsiptera. Annu Rev Ent. 2009;54:227鈥?9. CrossRef
    39. Duan J, Li R, Cheng D, Fan W, Zha X, Cheng T, et al. SilkDB v2.0: a platform for silkworm (Bombyx mori ) genome biology. Nucleic Acids Res. 2010;38(Database issue):D453鈥?. CrossRef
    40. Lawson D, Arensburger P, Atkinson P, Besansky NJ, Bruggner RV, Butler R, et al. VectorBase: a data resource for invertebrate vector genomics. Nucleic Acids Res. 2009;37(Database issue):D583鈥?. CrossRef
    41. Pag谩n HJ, Macas J, Nov谩k P, McCulloch ES, Stevens RD, Ray DA: Data from: Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats. 2012 Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.83164r7v.
    42. Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A, Nadeau NJ, et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature. 2012;487:94鈥?.
    43. Xia X, Xie Z. DAMBE: software package for data analysis in molecular biology and evolution. J Hered. 2001;92:371鈥?. CrossRef
    44. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403鈥?0. CrossRef
    45. Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16:276鈥?. CrossRef
    46. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792鈥?. CrossRef
    47. Nicholas KB, Nicholas HB, Deerfield DW. GeneDoc: analysis and visualization of genetic variation. EMBNEW News. 1997;4:14.
    48. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95鈥?.
    49. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188鈥?0. CrossRef
    50. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596鈥?. CrossRef
  • 刊物主题:Human Genetics; Animal Genetics and Genomics; Plant Genetics & Genomics; Developmental Biology;
  • 出版者:BioMed Central
  • ISSN:1759-8753
文摘
Background Horizontal transfer (HT) of transposable elements (TEs) into a new genome is considered as an important force to drive genome variation and biological innovation. However, most of the HT of DNA transposons previously described occurred between closely related species or insects. Results In this study, we carried out a detailed analysis of four DNA transposons, which were found in the first sequenced twisted-wing parasite, Mengenilla moldrzyki. Through the homology-based strategy, these transposons were also identified in other insects, freshwater planarian, hydrozoans, and bats. The phylogenetic distribution of these transposons was discontinuous, and they showed extremely high sequence identities (>87%) over their entire length in spite of their hosts diverging more than 300 million years ago (Mya). Additionally, phylogenies and comparisons of transposons versus orthologous gene identities demonstrated that these transposons have transferred into their hosts by independent HTs. Conclusions Here, we provided the first documented example of HT of CACTA transposons, which have been so far extensively studied in plants. Our results demonstrated that bats had continuously acquired new DNA elements via HT. This implies that predation on a large quantity of insects might increase bat exposure to HT. In addition, parasite-host interaction might facilitate exchanging of their genetic materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700