用户名: 密码: 验证码:
Fluorescence dynamics of N-terminal Trp–Trp residues in polypeptide: intrinsic indicators for monitoring pH
详细信息    查看全文
  • 作者:Lei Li ; Hua Yi ; Mengfang Chang ; Xiaodan Cao ; Zhongneng Zhou…
  • 关键词:Trp–Trp dipeptide ; Fluorescence ; Intrinsic pH sensors
  • 刊名:Chinese Science Bulletin
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:60
  • 期:24
  • 页码:2129-2134
  • 全文大小:1,141 KB
  • 参考文献:1.Perez-Sala D, Collado-Escobar D, Mollinedo F (1995) Intracellular alkalinization suppresses lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease. J Biol Chem 270:6235–6242CrossRef
    2.Ishaque A, Al-Rubeai M (1998) Use of intracellular pH and annexin-V flow cytometric assays to monitor apoptosis and its suppression by bcl-2 over-expression in hybridoma cell culture. J Immunol Methods 221:43–57CrossRef
    3.Miksa M, Kornura H, Wu RQ et al (2009) A novel method to determine the engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester. J Immunol Methods 342:71–77CrossRef
    4.Simon S, Roy D, Schindler M (1994) Intracellular pH and the control of multidrug resistance. Proc Natl Acad Sci USA 91:1128–1132CrossRef
    5.Gottlieb RA, Nordberg J, Skowronski E et al (1996) Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc Natl Acad Sci USA 93:654–658CrossRef
    6.Lakadamyali M, Rust MJ, Babcock HP et al (2003) Visualizing infection of individual influenza viruses. Proc Natl Acad Sci USA 100:9280–9285CrossRef
    7.Adie EJ, Kalinka S, Smith L et al (2002) A pH-sensitive fluor, CypHer (TM) 5, used to monitor agonist-induced g protein-coupled receptor internalization in live cells. Biotechniques 33:1152–1157
    8.Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 75:3327–3331CrossRef
    9.Abiko A, Masamune S (1996) Synthesis of (+)-siphonarienone: asymmetric alkylation using a chiral benzopyrano-isoxazolidine auxiliary. Tetrahedron Lett 37:1081–1084CrossRef
    10.Schindler M, Grabski S, Hoff E et al (1996) Defective pH regulation of acidic compartments in human breast cancer cells (MCF-7) is normalized in adriamycin-resistant cells (MCF-7adr). Biochemistry-US 35:2811–2817CrossRef
    11.Balut C, van deVen M, Despa S et al (2008) Measurement of cytosolic and mitochondrial pH in living cells during reversible metabolic inhibition. Kidney Int 73:226–232CrossRef
    12.Llopis J, McCaffery JM, Miyawaki A et al (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci USA 95:6803–6808CrossRef
    13.Lee MH, Han JH, Lee JH et al (2013) Two-color probe to monitor a wide range of pH values in cells. Angew Chem Int Edit 52:6206–6209CrossRef
    14.Wang R, Yu C, Yu F et al (2010) Molecular fluorescent probes for monitoring pH changes in living cells. TrAC-Trend Anal Chem 29:1004–1013CrossRef
    15.Qu F, Li NB, Luo HQ (2013) Highly sensitive fluorescent and colorimetric pH sensor based on polyethylenimine-capped silver nanoclusters. Langmuir 29:1199–1205CrossRef
    16.Xiaoqing L, Ruiyi L, Xiaohuan L et al (2015) Ultra sensitive and wide-range pH sensor based on the BSA-capped Cu nanoclusters fabricated by fast synthesis through the use of hydrogen peroxide additive. RSC Adv 5:48835–48841CrossRef
    17.Feng Y, Liu Y, Su C et al (2014) New fluorescent pH sensor based on label-free silicon nanodots. Sensor Actuat B Chem 203:795–801CrossRef
    18.Bizzarri R, Serresi M, Luin S et al (2009) Green fluorescent protein based pH indicators for in vivo use: a review. Anal Bioanal Chem 393:1107–1122CrossRef
    19.Hung Yin P, Albeck John G, Tantama M et al (2011) Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metab 14:545–554CrossRef
    20.Arosio D, Ricci F, Marchetti L et al (2010) Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nat Methods 7:516–518CrossRef
    21.Zhong D (2009) Hydration dynamics and coupled water–protein fluctuations probed by intrinsic tryptophan. In: Stuart A. Rice (ed) Advances in chemical physics. Wiley, New York, pp 83–149
    22.Ross JB, Rousslang KW, Brand L (1981) Time-resolved fluorescence and anisotropy decay of the tryptophan in adrenocorticotropin-(1-24). Biochemistry-US 20:4361–4369CrossRef
    23.van den Berg R, Jang DJ, El-Sayed MA (1990) Decay of the tryptophan fluorescence anisotropy in bacteriorhodopsin and its modified forms. Biophys J 57:759–764CrossRef
    24.De Lauder WB, Wahl P (1970) pH dependence of the fluorescence decay of tryptophan. Biochemistry-US 9:2750–2754CrossRef
    25.Jameson DM, Weber G (1981) Resolution of the pH-dependent heterogeneous fluorescence decay of tryptophan by phase and modulation measurements. J Phys Chem 85:953–958CrossRef
    26.Jia M, Yi H, Chang M et al (2015) Fluorescence kinetics of Trp–Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy. J Photochem Photobiol B 149:243–248CrossRef
    27.Xu JH, Knutson JR (2009) Quasi-static self-quenching of Trp-X and X-Trp dipeptides in water: ultrafast fluorescence decay. J Phys Chem B 113:12084–12089CrossRef
    28.Wiget P, Luisi PL (1978) Cooligopeptides containing aromatic residues spaced by glycyl residues. IX. Fluorescence properties of tryptophan-containing peptides. Biopolymers 17:167–180CrossRef
    29.Chen RF, Knutson JR, Ziffer H et al (1991) Fluorescence of tryptophan dipeptides: correlations with the rotamer model. Biochemistry-US 30:5184–5195CrossRef
    30.Yuan Y, Li W, Liu Z et al (2014) A versatile biosensing system for DNA-related enzyme activity assay via the synthesis of silver nanoclusters using enzymatically-generated DNA as template. Biosens Bioelectron 61:321–327CrossRef
    31.Szabo AG, Rayner DM (1980) Fluorescence decay of tryptophan conformers in aqueous solution. J Am Chem Soc 102:554–563CrossRef
  • 作者单位:Lei Li (1)
    Hua Yi (1)
    Mengfang Chang (1)
    Xiaodan Cao (1)
    Zhongneng Zhou (1)
    Cuifang Qin (1)
    Sanjun Zhang (1)
    Haifeng Pan (1)
    Yan Chen (2)
    Jianhua Xu (1)

    1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
    2. Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China
  • 刊物主题:Science, general; Life Sciences, general; Physics, general; Chemistry/Food Science, general; Earth Sciences, general; Engineering, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9541
文摘
pH plays a vital role in various cellular activities, and real-time observation of the intracellular pH through a pH indicator is very important for studying many physiological processes. In this paper, we studied the pH response of Trp–Trp dipeptide and its derivatives (NATrp2Me, NBTrp2 and Trp2Me) by steady-state and time-resolved fluorescence spectroscopy. Both the fluorescence intensities and lifetimes of Trp–Trp dipeptide as well as Trp2Me were functions of pH in the physiological range from 5.5 to 9.0. However, NATrp2Me and NBTrp2 showed no difference. The exposed amino was found to be pivotal for its pH dependence. Moreover, an artificially synthesized tetrapeptide (Trp–Trp–Ala–Ser) confirmed the pH sensitivity of N-terminal Trp–Trp residues. The pH values could be quantitatively determined from the fluorescence intensities and lifetimes of the N-terminal Trp–Trp residue. Thus, the N-terminal Trp–Trp residues may be fused into the polypeptides/proteins to serve as an intrinsic pH indicator in fluorescence spectroscopy and imaging. Keywords Trp–Trp dipeptide Fluorescence Intrinsic pH sensors

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700