用户名: 密码: 验证码:
Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction
详细信息    查看全文
  • 作者:Ruguang Ma ; Xiaodong Ren ; Bao Yu Xia ; Yao Zhou ; Chi Sun ; Qian Liu…
  • 关键词:nitrogen doping ; graphene ; molecular dynamic simulation ; oxygen reduction reaction
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:9
  • 期:3
  • 页码:808-819
  • 全文大小:3,330 KB
  • 参考文献:[1]Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.CrossRef
    [2]Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2011, 11, 19–29.CrossRef
    [3]Park, S.; Shao, Y. Y.; Liu, J.; Wang, Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: Status and perspective. Energy Environ. Sci. 2012, 5, 9331–9344.CrossRef
    [4]Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.CrossRef
    [5]Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.CrossRef
    [6]Lee, D. U.; Kim, B. J.; Chen, Z. W. One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst. J. Mater. Chem. A 2013, 1, 4754–4762.CrossRef
    [7]Ge, X. M.; Liu, Y. Y.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Xiao, P.; Zhang, Z.; Lim, S. H.; Li, B.; Wang, X. et al. Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. ACS Appl. Mater. Interfaces 2014, 6, 12684–12691.CrossRef
    [8]Liu, Q.; Jin, J. T.; Zhang, J. Y. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2013, 5, 5002–5008.CrossRef
    [9]Ganesan, P.; Prabu, M.; Sanetuntikul, J.; Shanmugam, S. Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: An efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catal. 2015, 5, 3625–3637.CrossRef
    [10]Wang, X. W.; Sun, G. Z.; Routh, P.; Kim, D.-H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067–7098.CrossRef
    [11]Xia, B. Y.; Yan, Y.; Wang, X.; Lou, X. W. Recent progress on graphene-based hybrid electrocatalysts. Mater. Horiz. 2014, 1, 379–399.CrossRef
    [12]Wu, Z.-S.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Zhao, J. P.; Cheng, H.-M. Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Res. 2010, 3, 16–22.CrossRef
    [13]Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394–4403.CrossRef
    [14]Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.CrossRef
    [15]Zheng, B.; Wang, J.; Wang, F.-B.; Xia, X.-H. Synthesis of nitrogen doped graphene with high electrocatalytic activity toward oxygen reduction reaction. Electrochem. Commun. 2013, 28, 24–26.CrossRef
    [16]Qu, L. T.; Liu, Y.; Baek, J.-B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.CrossRef
    [17]Sheng, Z.-H.; Shao, L.; Chen, J.-J.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.CrossRef
    [18]Lin, Z. Y.; Waller, G. H.; Liu, Y.; Liu, M. L.; Wong, C. P. 3D nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2013, 2, 241–248.CrossRef
    [19]Favaro, M.; Ferrighi, L.; Fazio, G.; Colazzo, L.; Di Valentin, C.; Durante, C.; Sedona, F.; Gennaro, A.; Agnoli, S.; Granozzi, G. Single and multiple doping in graphene quantum dots: Unraveling the origin of selectivity in the oxygen reduction reaction. ACS Catal. 2015, 5, 129–144.CrossRef
    [20]Ito, Y.; Qiu, H. J.; Fujita, T.; Tanabe, Y.; Tanigaki, K.; Chen, M. W. Bicontinuous nanoporous N-doped graphene for the oxygen reduction reaction. Adv. Mater. 2014, 26, 4145–4150.CrossRef
    [21]Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.CrossRef
    [22]Xing, T.; Zheng, Y.; Li, L. H.; Cowie, B. C. C.; Gunzelmann, D.; Qiao, S. Z.; Huang, S. M.; Chen, Y. Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene. ACS Nano 2014, 8, 6856–6862.CrossRef
    [23]Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C. H.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 7936–7942.CrossRef
    [24]Subramanian, N. P.; Li, X. G.; Nallathambi, V.; Kumaraguru, S. P.; Colon-Mercado, H.; Wu, G.; Lee, J.-W.; Popov, B. N. Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Power Sources 2009, 188, 38–44.CrossRef
    [25]Sosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255–268.CrossRef
    [26]Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRef
    [27]Kresse, G.; Furthmü ller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comp. Mater. Sci. 1996, 6, 15–50.CrossRef
    [28]Lin, T. Q.; Huang, F. Q.; Liang, J.; Wang, Y. X. A facile preparation route for boron-doped graphene, and its CdTe solar cell application. Energy Environ. Sci. 2011, 4, 862–865.CrossRef
    [29]Deng, D. H.; Pan, X. L.; Yu, L.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W.-X.; Fu, Q.; Ma, X. C.; Xue, Q. K. et al. Toward Ndoped graphene via solvothermal synthesis. Chem. Mater. 2011, 23, 1188–1193.CrossRef
    [30]Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.CrossRef
    [31]Lin, Z. Y.; Waller, G. H.; Liu, Y.; Liu, M. L.; Wong, C. P. Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon 2013, 53, 130–136.CrossRef
    [32]Yang, H. M.; Cui, X. J.; Deng, Y. Q.; Shi, F. Ionic liquid templated preparation of carbon aerogels based on resorcinolformaldehyde: Properties and catalytic performance. J. Mater. Chem. 2012, 22, 21852–21856.CrossRef
    [33]Hong, X.; Zhang, L. D.; Zhang, T. C.; Qi, F. An experimental and theoretical study of pyrrole pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry. J. Phys. Chem. A 2009, 113, 5397–5405.CrossRef
    [34]Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet–carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 7281–7285.CrossRef
    [35]Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRef
    [36]Lin, Z. Y.; Waller, G.; Liu, Y.; Liu, M. L.; Wong, C.-P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2012, 2, 884–888.CrossRef
    [37]Shao, Y. Y.; Zhang, S.; Engelhard, M. H.; Li, G. S.; Shao, G. C.; Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. H. Nitrogendoped graphene and its electrochemical applications. J. Mater. Chem. 2010, 20, 7491–7496.CrossRef
    [38]Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763.CrossRef
    [39]Saidi, W. A. Oxygen reduction electrocatalysis using N-doped graphene quantum-dots. J. Phys. Chem. Lett. 2013, 4, 4160–4165.CrossRef
    [40]Bao, X. G.; Nie, X. W.; von Deak, D.; Biddinger, E. J.; Luo, W. J.; Asthagiri, A.; Ozkan, U. S.; Hadad, C. M. A firstprinciples study of the role of quaternary-N doping on the oxygen reduction reaction activity and selectivity of graphene edge sites. Top Catal. 2013, 56, 1623–1633.CrossRef
    [41]Pels, J. R.; Kapteijn, F.; Moulijn, J. A.; Zhu, Q.; Thomas, K. M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995, 33, 1641–1653.CrossRef
    [42]Jeon, I.-Y.; Choi, H.-J.; Choi, M.; Seo, J.-M.; Jung, S.-M.; Kim, M.-J.; Zhang, S.; Zhang, L. P.; Xia, Z. H.; Dai, L. M. et al. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci. Rep. 2013, 3, 1810.
    [43]Tian, G.-L.; Zhao, M.-Q.; Yu, D. S.; Kong, X.-Y.; Huang, J.-Q.; Zhang, Q.; Wei, F. Nitrogen-doped graphene/carbon nanotube hybrids: In situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small 2014, 10, 2251–2259.CrossRef
    [44]Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z. Twostep boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem., Int. Ed. 2013, 52, 3110–3116.CrossRef
    [45]Wang, J.; Wang, H.-S.; Wang, K.; Wang, F.-B.; Xia, X.-H. Ice crystals growth driving assembly of porous nitrogen-doped graphene for catalyzing oxygen reduction probed by in situ fluorescence electrochemistry. Sci. Rep. 2014, 4, 6723.CrossRef
    [46]Hancock, C. A.; Ong, A. L.; Slater, P. R.; Varcoe, J. R. Development of CaMn1-x RuxO3-y (x = 0 and 0.15) oxygen reduction catalysts for use in low temperature electrochemical devices containing alkaline electrolytes: Ex situ testing using the rotating ring-disk electrode voltammetry method. J. Mater. Chem. A 2014, 2, 3047–3056.CrossRef
    [47]Chen, P.; Wang, L.-K.; Wang, G.; Gao, M.-R.; Ge, J.; Yuan, W.-J.; Shen, Y.-H.; Xie, A.-J.; Yu, S.-H. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: An efficient catalyst for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 4095–4103.CrossRef
    [48]Yu, D. S.; Zhang, Q.; Dai, L. M. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J. Am. Chem. Soc. 2010, 132, 15127–15129.CrossRef
    [49]Zhang, L. P.; Xia, Z. H. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 2011, 115, 11170–11176.CrossRef
  • 作者单位:Ruguang Ma (1) (2)
    Xiaodong Ren (1) (2)
    Bao Yu Xia (3)
    Yao Zhou (1) (2)
    Chi Sun (1) (2)
    Qian Liu (1) (2)
    Jianjun Liu (1) (2)
    Jiacheng Wang (1) (2)

    1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
    2. Shanghai Institute of Materials Genome, 99 Shangda Road, Shanghai, 200444, China
    3. School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Nitrogen-doped graphene (NG) was successfully synthesized by a novel, facile, and scalable bottom-up method. The annealed NG (NG-A) possessed high specific surface area and a hierarchical porous texture, and exhibited remarkably improved electrocatalytic activity in the oxygen reduction reaction in both alkaline and acidic media. Ab initio molecular dynamic simulations indicated that rapid H transfer and the thermodynamic stability of six-membered N structures promoted the transformation of N-containing species from pyrrolic to pyridinic at 600 °C. In O2-staturated 0.1 M KOH solution, the half-wave potential (E 1/2) of NG-A was only 62 mV lower than that of a commercial Pt/C catalyst, and the limiting current density of NG-A was 0.5 mA·cm–2 larger than that of Pt/C. Koutecky–Levich (K–L) plots and rotating ring-disk electrode measurement indicated a four-electron-transfer pathway in NG-A, which could be ascribed to its high content of pyridinic N.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700