用户名: 密码: 验证码:
Electrochemical aptasensor for lysozyme based on a gold electrode modified with a nanocomposite consisting of reduced graphene oxide, cuprous oxide, and plasma-polymerized propargylamine
详细信息    查看全文
  • 作者:Shaoming Fang ; Xiaodong Dong ; Hongfei Ji ; Shunli Liu ; Fufeng Yan…
  • 关键词:Plasma polymerization ; Differential pulse voltammetry ; Electrochemical impedance spectroscopy ; Aptasensor ; Hexacyanoferrate ; Field emission scanning electron microscopy ; FTIR
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:183
  • 期:2
  • 页码:633-642
  • 全文大小:796 KB
  • 参考文献:1.Northrop DB, Simpson FB (1997) New concepts in bioorganic chemistry beyond enzyme kinetics: direct determination of mechanisms by stopped-flow mass spectrometry. Bioorg Med Chem 5:641–644CrossRef
    2.Revenis ME, Kaliner MA (1992) Lactoferrin and lysozyme deficiency in airway secretions: association with the development of bronchopulmonary dysplasia. J Pediatr 121:262–270CrossRef
    3.Wang X, Dong P, He P, Fang Y (2010) A solid-state electrochemiluminescence sensing platform for detection of adenosine based on ferrocene-labeled structure-switching signaling aptamer. Anal Chim Acta 658:128–132CrossRef
    4.Yang H, Ji J, Liu Y, Kong J, Liu B (2009) An aptamer-based biosensor for sensitive thrombin detection. Electrochem Commun 11:38–40CrossRef
    5.Rodríguez MC, Rivas GA (2009) Label-free electrochemical aptasensor for the detection of lysozyme. Talanta 78:212–216CrossRef
    6.Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41CrossRef
    7.Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos SA, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
    8.Davies TJ, Hyde ME, Compton RG (2005) Nanotrench arrays reveal insight into graphite electrochemistry. Angew Chem 117:5251–5256CrossRef
    9.Xu Y, Shi G, Duan X (2015) Self-assembled three-dimensional graphene macrostructures: synthesis and applications in supercapacitors. Acc Chem Res 48:1666–1675CrossRef
    10.Hu B, He RQ, Chen C, Zhuge F, Zhu X, Peng S, Chen X, Pan L, Wu Y, Zheng W (2012) Electrically controlled electron transfer and resistance switching in reduced graphene oxide noncovalently functionalized with thionine. J Mater Chem 22:16422–16430CrossRef
    11.Ogoshi T, Ichihara Y, Yamagishi T, Nakamoto Y (2010) Supramolecular polymer networks from hybrid between graphene oxide and per-6-amino-β-cyclodextrin. Chem Commun 46:6087–6089CrossRef
    12.Roy I, Bhattacharyya A, Sarkar G, Saha NR, Rana D, Ghosh PP, Palit M, Das AR, Chattopadhyay D (2014) In situ synthesis of a reduced graphene oxide/cuprous oxide nanocomposite: a reusable catalyst. RSC Advances 4:52044–52052CrossRef
    13.Smela E, Inganäs O, Pei Q, Lundström I (1993) Electrochemical muscles: micromachining fingers and corkscrews. Adv Mater 5:630–632CrossRef
    14.Förch R, Zhang Z, Knoll W (2005) Soft plasma treated surfaces: tailoring of structure and properties for biomaterial applications. Plasma Process Polym 2:351–372CrossRef
    15.Qiu S, Gao S, Liu Q, Lin Z, Qiu B, Chen G (2011) Electrochemical impedance spectroscopy sensor for ascorbic acid based on copper (I) catalyzed click chemistry. Biosens Bioelectron 26:4326–4330CrossRef
    16.Zhang Z, Liu S, Shi Y, Zhang Y, Peacock D, Yan F, Wang P, He L, Feng X, Fang S (2014) Label-free aptamer biosensor for thrombin detection on a nanocomposite of graphene and plasma polymerized allylamine. J Mater Chem B 2:1530–1538CrossRef
    17.Bi S, Cui Y, Dong Y, Zhang N (2014) Target-induced self-assembly of DNA nanomachine on magnetic particle for multi-amplified biosensing of nucleic acid, protein, and cancer cell. Biosens Bioelectron 53:207–213CrossRef
    18.Kosman J, Juskowiak B (2011) Peroxidase-mimicking DNAzymes for biosensing applications: a review. Anal Chim Acta 707:7–17CrossRef
    19.Mangindaan D, Kuo WH, Chang CC, Wang SL, Liu HC, Wang MJ (2011) Plasma polymerization of amine-containing thin films and the studies on the deposition kinetics. Surf Coat Technol 206:1299–1306CrossRef
    20.He L, Zhang Y, Liu S, Fang S, Zhang Z (2014) A nanocomposite consisting of plasma-polymerized propargylamine and graphene for use in DNA sensing. Microchim Acta 181:1981–1989CrossRef
    21.Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47:145–152CrossRef
    22.Guo Y, Han Y, Guo Y, Dong C (2013) Graphene-orange II composite nanosheets with electroactive functions as label-free aptasensing platform for “signal-on” detection of protein. Biosens Bioelectron 45:95–101CrossRef
    23.Zong M, Huang Y, Wu H, Zhao Y, Liu P, Wang L (2013) Facile preparation of RGO/Cu2O/Cu composite and its excellent microwave absorption properties. Mater Lett 109:112–115CrossRef
    24.Majumder S, Priyadarshini M, Subudhi U, Chainy G, Varma S (2009) X-ray photoelectron spectroscopic investigations of modifications in plasmid DNA after interaction with Hg nanoparticles. Appl Surf Sci 256:438–442CrossRef
    25.Yu D, Tian J, Dai J, Wang X (2013) Corrosion resistance of three-layer superhydrophobic composite coating on carbon steel in seawater. Electrochim Acta 97:409–419CrossRef
    26.Balamurugan S, Obubuafo A, McCarley RL, Soper SA, Spivak DA (2008) Effect of linker structure on surface density of aptamer monolayers and their corresponding protein binding efficiency. Anal Chem 80:9630–9634CrossRef
    27.Du Y, Chen C, Li B, Zhou M, Wang E, Dong S (2010) Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination. Biosens Bioelectron 25:1902–1907CrossRef
    28.Sinzinger S, Jahns J (2003) Front matter. Wiley Online Library 13-32
    29.Li X, Liu J, Zhang S (2010) Electrochemical analysis of two analytes based on a dual-functional aptamer DNA sequence. Chem Commun 46:595–597CrossRef
    30.Mei H, Bing T, Yang X, Qi C, Chang T, Liu X, Cao Z, Shangguan D (2012) Functional-group specific aptamers indirectly recognizing compounds with alkyl amino group. Anal Chem 84:7323–7329CrossRef
    31.Fang S, Dong X, Zhang Y, Kang M, Liu S, Yan F, He L, Feng X, Wang P, Zhang Z (2014) One-step synthesis of porous cuprous oxide microspheres on reduced graphene oxide for selective detection of mercury ions. New J Chem 38:5935–5942CrossRef
    32.Bayramoglu G, Ozalp VC, Yilmaz M, Guler U, Salih B, Arica MY (2015) Lysozyme specific aptamer immobilized MCM-41 silicate for single-step purification and quartz crystal microbalance (QCM)-based determination of lysozyme from chicken egg white. Micropor Mesopor Mat 207:95–104CrossRef
    33.Yang C, Wang Q, Xiang Y, Yuan R, Chai Y (2014) Target-induced strand release and thionine-decorated gold nanoparticle amplification labels for sensitive electrochemical aptamer-based sensing of small molecules. Sensors Actuators B Chem 197:149–154CrossRef
    34.Liu S, Na W, Pang S, Shi F, Su X (2014) A label-free fluorescence detection strategy for lysozyme assay using CuInS 2 quantum dots. Analyst 139:3048–3054CrossRef
    35.Subramanian P, Lesniewski A, Kaminska I, Vlandas A, Vasilescu A, Niedziolka-Jonsson J, Pichonat E, Happy H, Boukherroub R, Szunerits S (2013) Lysozyme detection on aptamer functionalized graphene-coated SPR interfaces. Biosens Bioelectron 50:239–243CrossRef
  • 作者单位:Shaoming Fang (1) (2)
    Xiaodong Dong (1)
    Hongfei Ji (1)
    Shunli Liu (1)
    Fufeng Yan (1)
    Donglai Peng (1)
    Linghao He (1)
    Minghua Wang (1)
    Zhihong Zhang (1) (2)

    1. Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou, 450001, China
    2. Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou, 450001, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
This article describes an aptasensor for lysozyme that is based on a gold electrode modified with an aptamer-wrapped composite consisting of three-dimensional reduced graphene oxide, cuprous oxide, and plasma-polymerized propargylamine (Cu<sub>2sub>O@rGO@PpPG) as the sensing layer. The nanocomposite consisting of Cu<sub>2sub>O@rGO was synthesized by simultaneously reducing GO and Cu(II) ions with glucose and then modified by plasma-enhanced chemical vapor deposition using propargylamine as the monomer gas. The resulting amine-rich nanofilms of Cu<sub>2sub>O@rGO@PpPG nanocomposite were deposited on a gold electrode. Differential pulse voltammetry and electrochemical impedance spectroscopy show these layers to exhibit a good amperometric response and variation of the charge transfer resistance to lysozyme after aptamer strands had been immobilized on the films via electrostatic interaction between the negatively charged phosphate groups of the aptamer and the positively charged amino groups on the electrode. The sensor, when operated at 0.22 V (vs. Ag/AgCl), can detect lysozyme in the 0.1 nM to 200 nM concentration range with a 0.06 nM limit of detection. In addition, the sensor displays excellent selectivity and repeatability. In our perception, this strategy for preparing aptasensors holds a great potential with respect to the use of plasma-modified nanocomposites in clinical analysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700