用户名: 密码: 验证码:
A detailed procedure for CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana
详细信息    查看全文
  • 作者:Wenshan Liu ; Xiaohong Zhu ; Mingguang Lei ; Qingyou Xia&#8230
  • 关键词:CRISPR/Cas9 ; Targeted gene editing ; Genome engineering ; Arabidopsis thaliana
  • 刊名:Chinese Science Bulletin
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:60
  • 期:15
  • 页码:1332-1347
  • 全文大小:2,026 KB
  • 参考文献:1.Redondo P, Prieto J, Munoz IG et al (2008) Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456:107鈥?11View Article
    2.Lloyd A (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102:2232鈥?237View Article
    3.Wright DA, Townsend JA, Winfrey RJ Jr et al (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693鈥?05View Article
    4.Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437鈥?41View Article
    5.Zhang F, Voytas DF (2010) Targeted mutagenesis in Arabidopsis using zinc-finger nucleases. Methods Mol Biol 701:167鈥?77View Article
    6.Miller JC, Holmes MC, Wang J et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778鈥?85View Article
    7.Miller JC, Tan S, Qiao G et al (2010) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143鈥?48View Article
    8.Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843鈥?846View Article
    9.Mahfouz MM, Li L, Shamimuzzaman M et al (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108:2623鈥?628View Article
    10.Li T, Liu B, Spalding MH et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390鈥?92View Article
    11.Christian M, Qi Y, Zhang Y et al (2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 (Bethesda) 3:1697鈥?705View Article
    12.Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816鈥?21View Article
    13.Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819鈥?23View Article
    14.Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823鈥?26View Article
    15.Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7:739鈥?50View Article
    16.Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181鈥?11View Article
    17.Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247鈥?71View Article
    18.Garneau JE, Dupuis ME, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67鈥?1View Article
    19.Marraffini LA, Sontheimer EJ (2010) Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463:568鈥?71View Article
    20.Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096View Article
    21.Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262鈥?278View Article
    22.Feng Z, Zhang B, Ding W et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229鈥?232View Article
    23.Jiang W, Zhou H, Bi H et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188View Article
    24.Li JF, Norville JE, Aach J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688鈥?91View Article
    25.Mao Y, Zhang H, Xu N et al (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6:2008鈥?011View Article
    26.Miao J, Guo D, Zhang J et al (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233鈥?236View Article
    27.Nekrasov V, Staskawicz B, Weigel D et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691鈥?93View Article
    28.Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686鈥?88View Article
    29.Upadhyay SK, Kumar J, Alok A et al (2013) RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3:2233鈥?238View Article
    30.Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975鈥?983View Article
    31.Brooks C, Nekrasov V, Lippman ZB et al (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated system. Plant Physiol 166:1292鈥?297View Article
    32.Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348鈥?59View Article
    33.Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9:e93806View Article
    34.Xing HL, Dong L, Wang ZP et al (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327View Article
    35.Zhang H, Zhang J, Wei P et al (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797鈥?07View Article
    36.Feng Z, Mao Y, Xu N et al (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111:4632鈥?637View Article
    37.Yan M, Zhou SR, Xue HW (2014) CRISPR primer designer: design primers for knockout and chromosome imaging CRISPR-Cas system. J Integr Plant Biol. doi:10.鈥?111/鈥媕ipb.鈥?2295
    38.Weigel D, Glazebrook J (2006) Transformation of Agrobacterium using the freeze-thaw method. CSH Protoc. doi:10.鈥?101/鈥媝db.鈥媝rot4666
    39.Weigel D, Glazebrook J (2006) In planta transformation of Arabidopsis. CSH Protoc. doi:10.鈥?101/鈥媝db.鈥媝rot4668
    40.Wu FH, Shen SC, Lee LY et al (2009) Tape-Arabidopsis Sandwich: a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16View Article
    41.Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565鈥?572View Article
    42.Springer NM (2010) Isolation of plant DNA for PCR and genotyping using organic extraction and CTAB. CSH Protoc. doi:10.鈥?101/鈥媝db.鈥媝rot5515
    43.Neff MM, Neff JD, Chory J et al (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387鈥?92View Article
    44.Qiu P, Shandilya H, D鈥檃lessio JM et al (2004) Mutation detection using Surveyor nuclease. Biotechniques 36:702鈥?07
    45.Xiao A, Wang Z, Hu Y et al (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 41:e141View Article
    46.Canver MC, Bauer DE, Dass A et al (2014) Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem 289:21312鈥?1324View Article
    47.Jiang W, Bikard D, Cox D et al (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233鈥?39View Article
    48.Wang T, Wei JJ, Sabatini DM et al (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80鈥?4View Article
    49.O鈥檓alley RC, Ecker JR (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J 61:928鈥?40View Article
    50.Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959鈥?3964View Article
    51.Wu X, Kriz AJ, Sharp PA (2015) Target specificity of the CRISPR-Cas9 system. Quant Biol 2:59鈥?0View Article
    52.Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112:3570鈥?575View Article
    53.Baltes NJ, Gil-Humanes J, Cermak T et al (2014) DNA replicons for plant genome engineering. Plant Cell 26:151鈥?63View Article
  • 作者单位:Wenshan Liu (1) (2) (4)
    Xiaohong Zhu (2)
    Mingguang Lei (3)
    Qingyou Xia (4)
    Jose Ramon Botella (5)
    Jian-Kang Zhu (2) (3)
    Yanfei Mao (2)

    1. School of Life Sciences, Chongqing University, Chongqing, 400044, China
    2. Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
    4. State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
    3. Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
    5. School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
  • 刊物主题:Science, general; Life Sciences, general; Physics, general; Chemistry/Food Science, general; Earth Sciences, general; Engineering, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9541
文摘
The newly developed CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated) system has emerged as an efficient tool for genome-editing, providing an alternative to classical mutagenesis and transgenic methods to study gene function and improve crop traits. CRISPR/Cas facilitates targeted gene editing through RNA-guided DNA cleavage followed by cellular DNA repair mechanisms that introduce sequence changes at the site of cleavage. Here we describe a detailed procedure for our previously developed and highly efficient CRISPR/Cas9 method that allows the generation of heritable-targeted gene mutations and corrections in Arabidopsis. This protocol describes the strategies and steps for the selection of targets, design of single-guide RNA (sgRNA), vector construction and analysis of transgenic lines. We also offer a method to target two loci simultaneously using vectors containing two different sgRNAs. The principles described in this protocol can be applied to other plant species to generate stably inherited DNA modifications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700