用户名: 密码: 验证码:
Molecular dynamics simulation of melting and crystallization processes of polyethylene clusters confined in armchair single-walled carbon nanotubes
详细信息    查看全文
  • 作者:Zhou Zhou (1)
    Jinjian Wang (1)
    Xiaolei Zhu (1)
    Xiaohua Lu (1)
    Wenwen Guan (1)
    Yuchen Yang (1)
  • 关键词:Carbon nanotube ; Crystallization ; Melting ; Molecular dynamics simulation ; Polyethylene cluster
  • 刊名:Journal of Molecular Modeling
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:21
  • 期:1
  • 全文大小:1,528 KB
  • 参考文献:1. Hossain D, Tschopp MA, Ward DK, Bouvard JL, Wang P, Horstemeyer MF (2010) Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 51:6071鈥?083 CrossRef
    2. Van Krevelen DW, Nijenhuis KT (2009) Properties of polymers, 4th edn. Elsevier, Amsterdam
    3. Yang JS, Yang CL, Wang MS, Chen BD, Ma XG (2011) Crystallization of alkane melts induced by carbon nanotubes and graphene nanosheets: a molecular dynamics simulation study. Phys Chem Chem Phys 13:15476鈥?5482 CrossRef
    4. Yamamoto T (2013) Molecular dynamics of polymer crystallization revisited: crystallization from the melt and the glass in longer polyethylene. J Chem Phys 139(054903):1鈥?3
    5. Yi P, Locker CR, Rutledge GC (2013) Molecular dynamics simulation of homogeneous crystal nucleation in polyethylene. Macromolecules 46:4723鈥?733 CrossRef
    6. Ungar G, Stejny J, Keller A, Bidd I, Whiting MC (1985) The crystallization of ultralong normal paraffins: the onset of chain folding. Sci 229:386鈥?89 CrossRef
    7. Keller A (1957) A note on single crystals in polymers: evidence for a folded chain configuration. Philos Mag 2:1171鈥?175 CrossRef
    8. Cormia RL, Price FP, Turnbull D (1962) Kinetics of crystal nucleation in polyethylene. J Chem Phys 37:1333鈥?340 CrossRef
    9. Hoffman JD, Miller RL (1997) Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 38:3151鈥?212 CrossRef
    10. Tashiro K, Sasaki S (2003) Structural changes in the ordering process of polymers as studied by an organized combination of the various measurement techniques. Prog Polym Sci 28:451鈥?19 CrossRef
    11. Strobl G (2006) Crystallization and melting of bulk polymers: new observations, conclusions and a thermodynamic scheme. Prog Polym Sci 31:398鈥?42 CrossRef
    12. Schick C (2009) Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem 395:1589鈥?611 CrossRef
    13. Wang LZ, Duan LL (2012) Isothermal crystallization of a single polyethylene chain induced by graphene: a molecular dynamics simulation. Comput Theor Chem 1002:59鈥?3 CrossRef
    14. Wei CY (2007) Structural phase transition of alkane molecules in nanotube composites. Phys Rev B: Condens. Matter Mater Phys 76:134104 1鈥?0
    15. Wei CY (2009) Adsorption of an alkane mixture on carbon nanotubes: selectivity and kinetics. Phys Rev B Condens Matter Mater Phys 80(085409):1鈥? CrossRef
    16. Li LY, Li CY, Ni CY (2006) Polymer crystallization-driven, periodic patterning on carbon nanotubes. J Am Chem Soc 128:1692鈥?699 CrossRef
    17. Wang BB, Li B, Xiong J, Li CY (2008) Hierarchically ordered polymer nanofibers via electrospinning and controlled polymer crystallization. Macromolecules 41:9516鈥?521 CrossRef
    18. Li B, Li LY, Wang BB, Li CY (2009) Alternating patterns on single-walled carbon nanotubes. Nat Nanotechnol 4:358鈥?62 CrossRef
    19. Hu X, An HN, Li ZM, Geng Y, Li LB, Yang CL (2009) Origin of carbon nanotubes induced poly(L-Lactide) crystallization: surface induced conformational order. Macromolecules 42:3215鈥?218 CrossRef
    20. Yang H, Chen Y, Liu Y, Cai WS (2007) Molecular dynamics simulation of polyethylene on single wall carbon nanotube. J Chem Phys 127(094902):1鈥?
    21. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud鈥橦omme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327鈥?31 CrossRef
    22. Eslami H, Rahimi M, Muller-Plathe F (2013) Molecular dynamics simulation of a silica nanoparticle in oligomeric poly(methyl methacrylate): a model system for studying the interphase thickness in a polymer鈭抧anocomposite via different properties. Macromolecules 46:8680鈥?692 CrossRef
    23. Eslami H, Behrouz M (2014) Molecular dynamics simulation of a polyamide-66/carbon nanotube nanocomposite. J Phys Chem C 118:9841鈥?851 CrossRef
    24. Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000鈥?008 CrossRef
    25. Cheremisinoff NP (1996) Polymer characterization: laboratory techniques and analysis, 1st edn. Noyes, Westwood
    26. Zhang XB, Li ZS, Lu ZY, Sun CC (2001) Molecular dynamics simulation of the linear low-density polyethylene crystallization. J Chem Phys 115:3916鈥?922 CrossRef
    27. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1鈥?9 CrossRef
    28. Shimizu T, Yamamoto T (2000) Melting and crystallization in thin film of n-alkanes: a molecular dynamics simulation. J Chem Phys 113:3351鈥?359 CrossRef
    29. Hwang HJ, Kwon OK, Kang JW (2004) Copper nanocluster diffusion in carbon nanotube. Solid State Commun 129:687鈥?90 CrossRef
    30. Arcidiacono S, Walther JH, Poulikakos D, Passerone D, Koumoutsakos P (2005) Solidification of gold nanoparticles in carbon nanotubes. Phys Rev Lett 94(105502):1鈥?
    31. Harmandaris VA, Mavrantzas VG, Theodorou DN (1998) Atomistic molecular dynamics simulation of polydisperse linear polyethylene melts. Macromolecules 31:7934鈥?943 CrossRef
    32. Guo ZX, Ding JW, Xiao Y, Mao YL (2006) Lattice dynamics of carbon chain inside a carbon nanotube. J Phys Chem B 110:21803鈥?1807 CrossRef
    33. Waheed N, Lavine MS, Rutledge GC (2002) Molecular simulation of crystal growth in n-eicosane. J Chem Phys 116:2301鈥?309 CrossRef
    34. Ko MJ, Waheed N, Lavine MS, Rutledge GC (2004) Characterization of polyethylene crystallization from an oriented melt by molecular dynamics simulation. J Chem Phys 121:2823鈥?832 CrossRef
    35. Huang JF, Zhu XL, Bartell LS (1998) Molecular dynamics studies of the kinetics of freezing of (NaCl)108 clusters. J Phys Chem A 102:2708鈥?715 CrossRef
    36. Stack GM, Mandelkern L, Voigt-Martin IG (1984) Crystallization, melting, and morphology of low molecular weight polyethylene fractions. Macromolecules 17:321鈥?31 CrossRef
    37. Sun CQ, Shi Y, Li CM, Li S, Au Yeung TC (2006) Size-induced undercooling and overheating in phase transitions in bare and embedded clusters. Phys Rev B 73(075408):1鈥?
    38. Stubbs JM, Potoff JJ, Siepmann JI (2004) Transferable potentials for phase equilibria. 6. United-atom description for ethers, glycols, ketones, and aldehydes. J Phys Chem B 108:17596鈥?7605 CrossRef
    39. Yamamoto T (2005) Molecular dynamics modeling of the crystal- melt interfaces and the growth of chain folded lamellae. Adv Polym Sci 191:37鈥?5 CrossRef
    40. Alavi S, Thompson DL (2006) Molecular dynamics simulations of the melting of aluminum nanoparticles. J Phys Chem A 110:1518鈥?523 CrossRef
    41. Durand M, Meyer H, Benzerara O, Baschnagel J, Vitrac O (2010) Molecular dynamics simulations of the chain dynamics in monodisperse oligomer melts and of the oligomer tracer diffusion in an entangled polymer matrix. J Chem Phys 132(194902):1鈥?0
    42. Tseng HC, Chang RY, Wu JS (2011) Molecular structural property and potential energy dependence on nonequilibrium-thermodynamic state point of liquid n-hexadecane under shear. J Chem Phys 134(044511):1鈥?3
    43. Wang XL, Lu ZY, Li ZS, Sun CC (2007) Molecular dynamics simulation study on controlling the adsorption behavior of polyethylene by fine tuning the surface nanodecoration of graphite. Langmuir 23:802鈥?08 CrossRef
    44. Ramos J, Martinez-Salazar J (2011) Computer modeling of the crystallization process of single-chain ethylene/1-hexene copolymers from dilute solutions. J Polym Sci Part B Phys 49:421鈥?30 CrossRef
  • 作者单位:Zhou Zhou (1)
    Jinjian Wang (1)
    Xiaolei Zhu (1)
    Xiaohua Lu (1)
    Wenwen Guan (1)
    Yuchen Yang (1)

    1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
The confined interaction is important to understand the melting and crystallization of polymers within single-wall carbon tube (SWNT). However, it is difficult for us to observe this interaction. In the current work, the structures and behaviors of melting and crystallization for polyethylene (PE) clusters confined in armchair single-walled carbon nanotubes ((n,n)-SWNTs) are investigated and examined based on molecular dynamics (MD) simulations. The nonbonded energies, structures, Lindemman indices, radial density distributions, and diffusion coefficients are used to demonstrate the features of melting phase transition for PE clusters confined in (n,n)-SWNTs. The chain end-to-end distance (R n) and chain end-to-end distribution are used to examine the flexibility of the PE chain confined in SWNT. The global orientational order parameter (P2) is employed to reveal the order degree of whole PE polymer. The effect of polymerization degree on melting temperature and the influence of SWNT chirality on structure of PE cluster are examined and discussed. Results demonstrate that within the confined environment of SWNT, PE clusters adopt novel co-axial crystalline layer structure, in which parallel chains of each layer are approximately vertical to tube axis. The disordered-ordered transformation of PE chains in each layer is an important structural feature for crystallization of confined PE clusters. SWNTs have a considerable effect on the structures and stabilities of the confined PE clusters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700