用户名: 密码: 验证码:
Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries
详细信息    查看全文
  • 作者:Chao Lian ; Xiaoling Xiao ; Zheng Chen ; Yuxi Liu ; Enyue Zhao ; Dingsheng Wang…
  • 关键词:hexagonal tungsten oxide ; ultrathin nano ; ribbons ; low ; dimensional structure ; anode material ; lithium ion battery
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:9
  • 期:2
  • 页码:435-441
  • 全文大小:2,191 KB
  • 参考文献:[1]Cademartiri, L.; Ozin, G. A. Ultrathin nanowires—A materials chemistry perspective. Adv. Mater. 2009, 21, 1013–1020.CrossRef
    [2]Hong, X.; Wang, D. S.; Yu, R.; Yan, H.; Sun, Y.; He, L.; Niu, Z. Q.; Peng, Q.; Li, Y. D. Ultrathin Au–Ag bimetallic nanowires with Coulomb blockade effects. Chem. Commun. 2011, 47, 5160–5162.CrossRef
    [3]Hu, S.; Wang, X. Ultrathin nanostructures: Smaller size with new phenomena. Chem. Soc. Rev. 2013, 42, 5577–5594.CrossRef
    [4]Wang, P. P.; Yang, Y.; Zhuang, J.; Wang, X. Self-adjustable crystalline inorganic nanocoils. J. Am. Chem. Soc. 2013, 135, 6834–6837.CrossRef
    [5]Lee, K.; Seo, W. S.; Park, J. T. Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 2003, 125, 3408–3409.CrossRef
    [6]Li, Y.; Bando, Y.; Golberg, D. Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv. Mater. 2003, 15, 1294–1296.CrossRef
    [7]Suzuki, K.; Watanabe, T.; Murahashi, S. I. Aerobic oxidation of primary amines to oximes catalyzed by DPPH and WO3/Al2O3. Angew. Chem., Int. Ed. 2008, 47, 2079–2081.CrossRef
    [8]Zhang, X. H.; Gong, L.; Liu, K.; Cao, Y. Z.; Xiao, X.; Sun, W. M.; Hu, X. J.; Gao, Y. H.; Chen, J.; Zhou, J. et al. Tungsten oxide nanowires grown on carbon cloth as a flexible cold cathode. Adv. Mater. 2010, 22, 5292–5296.CrossRef
    [9]Li, W.; Xia, F.; Qu, J.; Li, P.; Chen, D. H.; Chen, Z.; Yu, Y.; Lu, Y.; Caruso, R. A.; Song, W. G. Versatile inorganic–organic hybrid WOx-ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis. Nano Res. 2014, 7, 903–916.CrossRef
    [10]Xi, G. C.; Ouyang, S. X.; Li, P.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem., Int. Ed. 2012, 51, 2395–2399.CrossRef
    [11]Liu, J. C.; Margeat, O.; Dachraoui, W.; Liu, X. J.; Fahlman, M.; Ackermann, J. Gram-scale synthesis of ultrathin tungsten oxide nanowires and their aspect ratio-dependent photocatalytic activity. Adv. Funct. Mater. 2014, 24, 6029–6037.CrossRef
    [12]He, J.; Liu, H. L.; Xu, B.; Wang, X. Highly flexible sub-1 nm tungsten oxide nanobelts as efficient desulfurization catalysts. Small 2015, 11, 1144–1149.CrossRef
    [13]Reis, K. P.; Ramanan, A.; Whittingham, M. S. Hydrothermal synthesis of sodium tungstates. Chem. Mater. 1990, 2, 219–221.CrossRef
    [14]Wang, X. B.; Tian, F. H.; Zhao, W. W.; Fu, A. P.; Zhao, L. H. Surface stabilization of hexagonal WO3 by non-metallic atoms: A DFT study. Comp. Mater. Sci. 2013, 68, 218–221.CrossRef
    [15]Huang, K.; Zhang, Q. Rechargeable lithium battery based on a single hexagonal tungsten trioxide nanowire. Nano Energy 2012, 1, 172–175.CrossRef
    [16]Szilágyi, I. M.; Wang, L. S.; Gouma, P. I.; Balázsi, C.; Madarász, J.; Pokol, G. Preparation of hexagonal WO3 from hexagonal ammonium tungsten bronze for sensing NH3. Mater. Res. Bull. 2009, 44, 505–508.CrossRef
    [17]Gu, Z. J.; Li, H. Q.; Zhai, T. Y.; Yang, W. S.; Xia, Y. Y.; Ma, Y.; Yao, J. N. Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals. J. Solid State Chem. 2007, 180, 98–105.CrossRef
    [18]Baserga, A.; Russo, V.; Di Fonzo, F.; Bailini, A.; Cattaneo, D.; Casari, C. S.; Bassi, A. L.; Bottani, C. E. Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization. Thin Solid Films 2007, 515, 6465–6469.
    [19]Ha, J. H.; Muralidharan, P.; Kim, D. K. Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts. J. Alloy Compd. 2009, 475, 446–451.CrossRef
    [20]Lin, F.; Li, C. P.; Chen, G.; Tenent, R. C.; Wolden, C. A.; Gillaspie, D. T.; Dillon, A. C.; Richards, R. M.; Engtrakul, C. Low-temperature ozone exposure technique to modulate the stoichiometry of WOx nanorods and optimize the electrochromic performance. Nanotechnology 2012, 23, 255601.
    [21]Szilágyi, I. M.; Fórizs, B.; Rosseler, O.; Szegedi, Á.; Németh, P.; Király, P.; Tárkányi, G.; Vajna, B.; Varga-Josepovits, K.; László, K. et al. WO3 photocatalysts: Influence of structure and composition. J. Catal. 2012, 294, 119–127.CrossRef
    [22]Nogueira, H. I. S.; Cavaleiro, A. M. V.; Rocha, J.; Trindade, T.; de Jesus, J. D. P. Synthesis and characterization of tungsten trioxide powders prepared from tungstic acids. Mater. Res. Bull. 2004, 39, 683–693.CrossRef
    [23]Polleux, J.; Pinna, N.; Antonietti, M.; Niederberger, M. Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J. Am. Chem. Soc. 2005, 127, 15595–15601.CrossRef
    [24]Firkala, T.; Fórizs, B.; Drotár, E.; Tompos, A.; Tóth, A. L.; Varga-Josepovits, K.; László, K.; Leskelä, M.; Szilágyi, I. M. Influence of the support crystal structure of WO3/Au catalysts in COoxidation. Catal. Lett. 2014, 144, 831–836.CrossRef
    [25]Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J. Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications. J. Am. Chem. Soc. 2001, 123, 10639–10649.CrossRef
    [26]Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192.CrossRef
    [27]Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.CrossRef
    [28]Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRef
    [29]Komaba, S.; Kumagai, N.; Kato, K.; Yashiro, H. Hydrothermal synthesis of hexagonal tungsten trioxide from Li2WO4 solution and electrochemical lithium intercalation into the oxide. Solid State Ionics 2000, 135, 193–197.CrossRef
    [30]Pervez, S. A.; Kim, D.; Doh, C. H.; Farooq, U.; Choi, H. Y.; Choi, J. H. Anodic WO3 mesosponge @ carbon: A novel binder-less electrode for advanced energy storage devices. ACS Appl. Mater. Interfaces 2015, 7, 7635-7643.
    [31]Duan, X. C.; Xiao, S. H.; Wang, L. L.; Huang, H.; Liu, Y.; Li, Q. H.; Wang, T. H. Ionic liquid-modulated preparation of hexagonal tungsten trioxide mesocrystals for lithium-ion batteries. Nanoscale 2015, 7, 2230–2234.CrossRef
    [32]Kim, D. M.; Kim, S. J.; Lee, Y. W.; Kwak, D. H.; Park, H. C.; Kim, M. C.; Hwang, B. M.; Lee, S.; Choi, J. H.; Hong, S. et al. Two-dimensional nanocomposites based on tungsten oxide nanoplates and graphene nanosheets for high-performance lithium ion batteries. Electrochim. Acta 2015, 163, 132–139.CrossRef
  • 作者单位:Chao Lian (1)
    Xiaoling Xiao (2)
    Zheng Chen (1)
    Yuxi Liu (1)
    Enyue Zhao (2)
    Dingsheng Wang (1)
    Chen Chen (1)

    1. Department of Chemistry & Collaborative Innovation Center for Nanomaterial Science and Engineering, Tsinghua University, Beijing, 100084, China
    2. College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Hexagonal ultrathin WO3 nano-ribbons (HUWNRs) of subnanometer thicknesses, 2–5 nm widths, and lengths of up to several micrometers were prepared by a solvothermal method. The as-prepared HUWNRs grow along the [001] direction, and the main exposed facet is the (120) crystal plane. The HUWNRs exhibit good electrochemical performance as an anode material in lithium ion batteries because of their unique structure. It is believed that these unique materials may be applied in many fields.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700