用户名: 密码: 验证码:
Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature
详细信息    查看全文
  • 作者:Huawen Hu ; John H. Xin ; Hong Hu ; Xiaowen Wang
  • 关键词:metal ; free graphene carbocatalyst ; activity and durability ; L ; ascorbic acid ; active sites and domains ; synergistic effect ; carbocatalytic conversion of 4 ; nitrophenol (4NP) to 4 ; aminophenol (4AP)
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:8
  • 期:12
  • 页码:3992-4006
  • 全文大小:3,262 KB
  • 参考文献:[1]Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. Onepot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871-79.CrossRef
    [2]Neumann, C. C. M.; Laborda, E.; Tschulik, K.; Ward, K. R.; Compton, R. G. Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen peroxide escape. Nano Res. 2013, 6, 511-24.CrossRef
    [3]Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res. 2014, 7, 1205-214.CrossRef
    [4]Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W. et al. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Res. 2015, 8, 1365-372.CrossRef
    [5]Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W.; Miao, D. G.; Liu, Y. Synthesis and stabilization of metal nanocatalysts for reduction reactions–A review. J. Mater. Chem. A 2015, 3, 11157-1182.CrossRef
    [6]Dreyer, D. R.; Jia, H.-P.; Bielawski, C. W. Graphene oxide: A convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. 2010, 122, 6965-968.CrossRef
    [7]Sun, L.; Zhang, Z. J.; Dang, H. X. A novel method for preparation of silver nanoparticles. Mater. Lett. 2003, 57, 3874-879.
    [8]Wang, Q. Y.; Zhao, B.; Li, G. F.; Zhou, R. X. Application of rare earth modified Zr-based ceria-zirconia solid solution in three-way catalyst for automotive emission control. Environ. Sci. Technol. 2010, 44, 3870-875.CrossRef
    [9]Biffis, A.; Zecca, M.; Basato, M. Metallic palladium in the heck reaction: Active catalyst or convenient precursor? Eur. J. Inorg. Chem. 2001, 2001, 1131-133.
    [10]Kong, X.-K.; Sun, Z.-Y.; Chen, M.; Chen, C.-L.; Chen, Q.-W. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energ. Environ. Sci. 2013, 6, 3260-266.CrossRef
    [11]Su, C. L.; Acik, M.; Takai, K.; Lu, J.; Hao, S.-J.; Zheng, Y.; Wu, P. P.; Bao, Q. L.; Enoki, T.; Chabal, Y. J. et al. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat. Commun. 2012, 3, 1298.CrossRef
    [12]Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Carbocatalysis by graphene-based materials. Chem. Rev. 2014, 114, 6179-212.CrossRef
    [13]Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W.; Kong, Y. Metal-free graphene-based catalyst—insight into the catalytic activity: A short review. Appl. Catal. A: Gen. 2015, 492, 1-.CrossRef
    [14]Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y.; Ma, Y. F.; Zhang, X. Y.; Chen, Y. S. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275-279.CrossRef
    [15]Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S. et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327-31.CrossRef
    [16]Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W.; Lu, X. K. Organic liquids-responsive ?-cyclodextrin-functionalized graphene-based fluorescence probe: Label-free selective detection of tetrahydrofuran. Molecules 2014, 19, 7459-479.CrossRef
    [17]Hu, H. W.; Allan, C. C. K.; Li, J. H.; Kong, Y.; Wang, X. W.; Xin, J. H.; Hu, H. Multifunctional organically modified graphene with super-hydrophobicity. Nano Res. 2014, 7, 418-33.CrossRef
    [18]Hu, H. W.; Xin, J. H.; Hu, H. PAM/graphene/Ag ternary hydrogel: Synthesis, characterization and catalytic application. J. Mater. Chem. A 2014, 2, 11319-1333.CrossRef
    [19]Hu, H.-W.; Xin, J. H.; Hu, H. Highly efficient graphenebased ternary composite catalyst with polydopamine layer and copper nanoparticles. ChemPlusChem 2013, 78, 1483-490.CrossRef
    [20]Eswaraiah, V.; Jyothirmayee Aravind, S. S.; Ramaprabhu, S. Top down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. J. Mater. Chem. 2011, 21, 6800-803.CrossRef
    [21]Machado, B. F.; Serp, P. Graphene-based materials for catalysis. Catal. Sci. Technol. 2012, 2, 54-5.CrossRef
    [22]Peng, W. C.; Li, X. Y. Synthesis of a sulfur-graphene composite as an enhanced metal-free photocatalyst. Nano Res. 2013, 6, 286-92.CrossRef
    [23]Fu, H. Y.; Zhu, D. Q. Graphene oxide-facilitated reduction of nitrobenzene in sulfide-containing aqueous solutions. Environ. Sci. Technol. 2013, 47, 4204-210.CrossRef
    [24]Kong, X.-K.; Chen, Q.-W.; Lun, Z.-Y. Probing the influence of different oxygenated groups on graphene oxide’s catalytic performance. J. Mater. Chem. A 2014, 2, 610-13.CrossRef
    [25]Han, C.; Chen, Z.; Zhang, N.; Colmenares, J. C.; Xu, Y.-J. Hierarchically CdS d
  • 作者单位:Huawen Hu (1)
    John H. Xin (1)
    Hong Hu (1)
    Xiaowen Wang (1)

    1. Nanotechnology Centre, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
The development of an active, durable, and metal-free carbocatalyst that is able to replace metal-based catalysts is of increasing scientific and technological importance. The use of such a catalyst would avoid problems caused by metal-containing catalysts, for example, environmental pollution by heavy metals and depletion of rare metal resources. Herein, an active and durable graphene carbocatalyst is presented for the carbocatalytic conversion of 4-nitrophenol to 4-aminophenol at ambient temperature. The carbocatalyst was prepared via a mild, water-based reaction between L-ascorbic acid (AA) and graphene oxide (GO) and did not involve any other reactants. During the structure and catalytic property optimization, a series of carbocatalysts were fabricated at various reaction temperatures and AA/GO ratios. Using several characterization techniques, detailed structural features of these carbocatalysts were identified. Possible active species and sites on the carbocatalysts were also identified such as certain oxygen-containing groups, the π-conjugated system, and graphene sheet edges. In addition, the synergistic effect between these active species and sites on the resulting catalytic activity is highlighted. Furthermore, we clarified the origin of the high stability and durability of the optimized carbocatalyst. The work presented here aids the design of high-performance carbocatalysts for hydrogenation reactions, and increases understanding of the structural and mechanistic aspects at the molecular level that lead to high catalyst activity and durability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700