用户名: 密码: 验证码:
The influence of target material and thickness on proton energy and angular distribution
详细信息    查看全文
  • 作者:LuNing Su (1)
    BiCheng Liu (1) (2)
    XiaoXuan Lin (1)
    Feng Liu (1)
    Fei Du (1)
    XiaoLong Liu (1)
    Yi Zheng (1)
    XuLei Ge (1)
    YuTong Li (1)
    ZhengMing Sheng (1) (3)
    LiMing Chen (1)
    WeiMin Wang (1)
    JingLong Ma (1)
    Xin Lu (1)
    ZhiYi Wei (1)
    JiaEr Chen (2)
    Jie Zhang (1) (3)
  • 关键词:laser ; driven ; proton ; acceleration
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:56
  • 期:2
  • 页码:457-461
  • 全文大小:451KB
  • 参考文献:1. Borghesi M, Campbell D H, Schiavi A, et al. Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Phys Plasmas, 2002, 9: 2214鈥?220 CrossRef
    2. Kodama R, Norreys P A, Mima K, et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature, 2001, 412: 798鈥?02 CrossRef
    3. Bulanov S S, Brantov A, Bychenkov V Y, et al. Accelerating protons to therapeutic energies with ultra-intense ultra-clean and ultra-short laser pulses. Med Phys, 2008, 35: 1770鈥?776 CrossRef
    4. Zhang X M, Shen B F, Li X M, et al. Efficient GeV ion generation by ultraintense circularly polarized laser pulse. Phys Plasmas, 2007, 14: 123108 CrossRef
    5. Yan X Q, Lin C, Sheng Z M, et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys Rev Lett, 2008, 100: 135003 CrossRef
    6. Macchi A, Cattani F, Liseykina T V, et al. Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys Rev Lett, 2005, 94: 165003 CrossRef
    7. Kaluza M, Schreiber J, Santala M I K, et al. Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys Rev Lett, 2004, 93: 045003 CrossRef
    8. Zhang X M, Shen B F, Yu M Y, et al. Effect of plasma temperature on electrostatic shock generation and ion acceleration by laser. Phys Plasmas, 2007, 14: 113108 CrossRef
    9. Silva L O, Marti M, Davies J R, et al. Proton shock acceleration in laser-plasma interactions. Phys Rev Lett, 2004, 92: 015002 CrossRef
    10. D'Humi猫res E, Lefebvre E, Gremillet L, et al. Proton acceleration mechanisms in high-intensity laser interaction with thin foils. Phys Plasmas, 2005, 12: 062704 CrossRef
    11. Wang X F, Nemoto K, Nayuki T, et al. Effect of plasma peak density on energetic proton emission in ultrashort high-intensity laser-foil interactions. Phys Plasmas, 2005, 12: 113101 CrossRef
    12. Holkundkar A R, Gupta N K. Effect of initial plasma density on laser induced ion acceleration. Phys Plasmas, 2008, 15: 123104 CrossRef
    13. Chen M, Sheng Z M, Dong Q L, et al. Ion acceleration by colliding electrostatic shock waves in laser-solid interaction. Phys Plasmas, 2007, 14: 113106 CrossRef
    14. Chen M, Sheng Z M, Dong Q L, et al. Collisionless electrostatic shock generation and ion acceleration by ultraintense laser pulses in overdense plasmas. Phys Plasmas, 2007, 14: 053102 CrossRef
    15. Wilks S C, Langdon A B, Cowan T E, et al. Energetic proton generation in ultra-intense laser-solid interactions. Phys Plasmas, 2001, 8: 542鈥?49 CrossRef
    16. Nakamura T, Fukuda Y, Yogo A, et al. High energy negative ion generation by Coulomb implosion mechanism. Phys Plasmas, 2009, 16: 113106 CrossRef
    17. Murakami M, Mima K. Efficient generation of quasimonoenergetic ions by Coulomb explosions of optimized nanostructured clusters. Phys Plasmas, 2009, 16: 103108 CrossRef
    18. Esirkepov T, Borghesi M, Bulanov S V, et al. Highly efficient relativisticion generation in the laser-piston regime. Phys Rev Lett, 2004, 92: 175003 CrossRef
    19. Santos J J, Debayle A, Nicola茂 Ph, et al. Fast-electron transport and induced heating in aluminum foils. Phys Plasmas, 2007, 14: 103107 CrossRef
    20. Manclossi M, Santos J J, Batani D, et al. Study of ultraintense laser-produced fast-electron propagation and filamentation in insulator and metal foil targets by optical emission diagnostics. Phys Rev Lett, 2006, 96: 125002 CrossRef
    21. Santos J J, Amiranoff F, Baton S D, et al. Fast electron transport in ultraintense laser pulse interaction with solid targets by rear-side self-radiation diagnostics. Phys Rev Lett, 2002, 89: 025001 CrossRef
    22. Malka G, Miquel J L. Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target. Phys Rev Lett, 1996, 77: 75鈥?8 CrossRef
    23. Wilks S C, Kruer W L, Tabak M, et al. Absorption of ultra-intense laser pulses. Phys Rev Lett, 1992, 69: 1383鈥?386 CrossRef
    24. Fuchs J, Antici P, D'Humi猫res E, et al. Laser-driven proton scaling laws and new paths towards energy increase. Nat Phys, 2006, 2: 48鈥?4 CrossRef
    25. Mora P. Plasma expansion into a vacuum. Phys Rev Lett, 2003, 90: 185002 CrossRef
    26. Honrubia J, Kaluza M, Schreiber J, et al. Laser-driven fast-electron transport in preheated foil targets. Phys Plasmas, 2005, 12: 052708 CrossRef
    27. Flacco A, Sylla F, Veltcheva M, et al. Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration. Phys Rev E, 2010, 81: 036405 CrossRef
    28. Lindau F, Lundh O, Persson A, et al. Laser-accelerated protons with energy-dependent beam direction. Phys Rev Lett, 2005, 95: 175002 CrossRef
    29. Lundh O, Lindau F, Persson A, et al. Influence of shock waves on laser-driven proton acceleration. Phys Rev E, 2007, 76: 026404 CrossRef
    30. Brambrink E, Roth M, Blazevic A, et al. Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration. Laser Part Beams, 2006, 24: 163鈥?68 CrossRef
    31. Xu M H, Li Y T, Liu F, et al. Enhancement of ion generation in low-contrast laser-foil interactions by defocusing. Acta Phys Sin, 2011, 60: 045204
  • 作者单位:LuNing Su (1)
    BiCheng Liu (1) (2)
    XiaoXuan Lin (1)
    Feng Liu (1)
    Fei Du (1)
    XiaoLong Liu (1)
    Yi Zheng (1)
    XuLei Ge (1)
    YuTong Li (1)
    ZhengMing Sheng (1) (3)
    LiMing Chen (1)
    WeiMin Wang (1)
    JingLong Ma (1)
    Xin Lu (1)
    ZhiYi Wei (1)
    JiaEr Chen (2)
    Jie Zhang (1) (3)

    1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
    2. State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing, 100871, China
    3. Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240, China
  • ISSN:1869-1927
文摘
The paper has studied the influence of target material and thickness on energy and angular distributions of the protons generated by using an 800 nm, 60 fs, 0.24 J laser pulse to irradiate solid target foils. The results show that the initial density and thickness of the targets will affect the formation of the acceleration sheath fields in the target normal direction. For the same target thickness, using lower density target materials can obtain a higher proton maximum energy. However, lower density targets tend to be deformed due to the shock waves launched by the laser pulses, making the proton spatial distribution more divergent.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700