用户名: 密码: 验证码:
Effects of extracellular calcium on viability and osteogenic differentiation of bone marrow stromal cells in vitro
详细信息    查看全文
  • 作者:Shaowen Cheng (2)
    Wei Wang (1)
    Zhongqin Lin (4)
    Ping Zhou (3)
    Xiaolei Zhang (1)
    Wei Zhang (1)
    Qingyu Chen (1)
    Dongquan Kou (1)
    Xiaozhou Ying (1)
    Yue Shen (1)
    Xiaojie Cheng (1)
    Ziming Yu (2)
    Lei Peng (2)
    Chuanzhu Lu (2)
  • 关键词:Mesenchymal stem cell ; Osteogenesis ; Calcium ; Viability ; Differentiation
  • 刊名:Human Cell
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:26
  • 期:3
  • 页码:114-120
  • 全文大小:530KB
  • 参考文献:1. Labelle D, Jumarie C, Moreau R. Capacitative calcium entry and proliferation of human osteoblast-like MG-63 cells. Cell Prolif. 2007;40:866-4. CrossRef
    2. Maeno S, Niki Y, Matsumoto H, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26:4847-5. CrossRef
    3. Huang Z, Cheng SL, Slatopolsky E. Sustained activation of the extracellular signal-regulated kinase pathway is required for extracellular calcium stimulation of human osteoblast proliferation. J Biol Chem. 2001;276:21351-. CrossRef
    4. Jung GY, Park YJ, Han JS. Effects of HA released calcium ion on osteoblast differentiation. J Mater Sci Mater Med. 2010;21:1649-4. CrossRef
    5. Eklou-Kalonji E, Denis I, Lieberherr M, Pointillart A. Effects of extracellular calcium on the proliferation and differentiation of porcine osteoblasts in vitro. Cell Tissue Res. 1998;292:163-1. CrossRef
    6. Silver IA, Murrills RJ, Etherington DJ. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res. 1988;175:266-6. CrossRef
    7. Takagishi Y, Kawakami T, Hara Y, Shinkai M, Takezawa T, Nagamune T. Bone-like tissue formation by three-dimensional culture of MG63 osteosarcoma cells in gelatin hydrogels using calcium-enriched medium. Tissue Eng. 2006;12:927-7. CrossRef
    8. Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000;49:328-7. CrossRef
    9. Quarto R, Mastrogiacomo M, Cancedda R, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001;344:385-. CrossRef
    10. Shang Q, Wang Z, Liu W, Shi Y, Cui L, Cao Y. Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J Craniofac Surg. 2001;12:586-3 (discussion 94-).
    11. Sun H, Wu C, Dai K, Chang J, Tang T. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials. 2006;27:5651-. CrossRef
    12. Ruml LA, Sakhaee K, Peterson R, Adams-Huet B, Pak CY. The effect of calcium citrate on bone density in the early and mid-postmenopausal period: a randomized placebo-controlled study. Am J Ther. 1999;6:303-1. CrossRef
    13. Kenny AM, Prestwood KM, Biskup B, et al. Comparison of the effects of calcium loading with calcium citrate or calcium carbonate on bone turnover in postmenopausal women. Osteoporos Int. 2004;15:290-. CrossRef
    14. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65?years of age or older. N Engl J Med. 1997;337:670-. CrossRef
    15. Kasten P, Luginbuhl R, van Griensven M, et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, beta-tricalcium phosphate and demineralized bone matrix. Biomaterials. 2003;24:2593-03. CrossRef
    16. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71-. CrossRef
    17. Sugiyama O, Orimo H, Suzuki S, Yamashita K, Ito H, Shimada T. Bone formation following transplantation of genetically modified primary bone marrow stromal cells. J Orthop Res. 2003;21:630-. CrossRef
    18. Luu HH, Song WX, Luo X, et al. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res. 2007;25:665-7. CrossRef
    19. Walsh S, Jefferiss CM, Stewart K, Beresford JN. IGF-I does not affect the proliferation or early osteogenic differentiation of human marrow stromal cells. Bone. 2003;33:80-. CrossRef
    20. Jager M, Fischer J, Dohrn W, et al. Dexamethasone modulates BMP-2 effects on mesenchymal stem cells in vitro. J Orthop Res. 2008;26:1440-. CrossRef
    21. Song IH, Caplan AI, Dennis JE. In vitro dexamethasone pretreatment enhances bone formation of human mesenchymal stem cells in vivo. J Orthop Res. 2009;27:916-1. CrossRef
    22. Sant’Anna EF, Leven RM, Virdi AS, Sumner DR. Effect of low intensity pulsed ultrasound and BMP-2 on rat bone marrow stromal cell gene expression. J Orthop Res. 2005;23:646-2. CrossRef
    23. Davis LA, Zur Nieden NI. Mesodermal fate decisions of a stem cell: the Wnt switch. Cell Mol Life Sci. 2008;65:2658-4. CrossRef
    24. Huang HM, Lee SY, Yao WC, Lin CT, Yeh CY. Static magnetic fields up-regulate osteoblast maturity by affecting local differentiation factors. Clin Orthop Relat Res. 2006;447:201-. CrossRef
    25. Kim HK, Kim JH, Abbas AA, Yoon TR. Alendronate enhances osteogenic differentiation of bone marrow stromal cells: a preliminary study. Clin Orthop Relat Res. 2009;467:3121-. CrossRef
    26. Owen TA, Aronow M, Shalhoub V, et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol. 1990;143:420-0. CrossRef
    27. Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int. 2002;71:145-4. CrossRef
    28. Glowacki J, Lian JB. Impaired recruitment and differentiation of osteoclast progenitors by osteocalcin-deplete bone implants. Cell Differ. 1987;21:247-4. CrossRef
    29. Liu Y, Cooper PR, Barralet JE, Shelton RM. Influence of calcium phosphate crystal assemblies on the proliferation and osteogenic gene expression of rat bone marrow stromal cells. Biomaterials. 2007;28:1393-03. CrossRef
    30. Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med. 2000;11:279-03. CrossRef
    31. Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989;69:990-047.
  • 作者单位:Shaowen Cheng (2)
    Wei Wang (1)
    Zhongqin Lin (4)
    Ping Zhou (3)
    Xiaolei Zhang (1)
    Wei Zhang (1)
    Qingyu Chen (1)
    Dongquan Kou (1)
    Xiaozhou Ying (1)
    Yue Shen (1)
    Xiaojie Cheng (1)
    Ziming Yu (2)
    Lei Peng (2)
    Chuanzhu Lu (2)

    2. Trauma Center of the Affiliated Hospital of Hainan Medical College, 31 Long Hua Road, Haikou, 571100, China
    1. Department of Orthopaedic Surgery, The Second Affiliated Hospital of Wenzhou Medical College, 109 Xue Yuan Xi Road, Wenzhou, 325000, China
    4. Department of Orthopaedic Surgery, The Hospital of Integrated Traditional Chinese and Western Medicine of Wenzhou, Wenzhou, China
    3. Department of Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
文摘
Bone marrow stromal cells (BMSCs) have been extensively used for tissue engineering. However, the effect of Ca2+ on the viability and osteogenic differentiation of BMSCs has yet to be evaluated. To determine the dose-dependent effect of Ca2+ on viability and osteogenesis of BMSCs in vitro, BMSCs were cultured in calcium-free DMEM medium supplemented with various concentrations of Ca2+ (0, 1, 2, 3, 4, and 5?mM) from calcium citrate. Cell viability was analyzed by MTT assay and osteogenic differentiation was evaluated by alkaline phosphatase (ALP) assay, Von Kossa staining, and real-time PCR. Ca2+ stimulated BMSCs viability in a dose-dependent manner. At slightly higher concentrations (4 and 5?mM) in the culture, Ca2+ significantly inhibited the activity of ALP on days 7 and 14 (P?<?0.01 or P?<?0.05), significantly suppressed collagen synthesis (P?<?0.01 or P?<?0.05), and significantly elevated calcium deposition (P?<?0.01) and mRNA levels of osteocalcin (P?<?0.01 or P?<?0.05) and osteopontin (P?<?0.01 or P?<?0.05). Therefore, elevated concentrations of extracellular calcium may promote cell viability and late-stage osteogenic differentiation, but may suppress early-stage osteogenic differentiation in BMSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700