用户名: 密码: 验证码:
The impact of global warming on Kuroshio Extension and its southern recirculation using CMIP5 experiments with a high-resolution climate model MIROC4h
详细信息    查看全文
  • 作者:Xing Zhang ; Qiang Wang ; Mu Mu
  • 刊名:Theoretical and Applied Climatology
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:127
  • 期:3-4
  • 页码:815-827
  • 全文大小:
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Atmospheric Sciences; Climatology; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution;
  • 出版者:Springer Vienna
  • ISSN:1434-4483
  • 卷排序:127
文摘
Responses of the Kuroshio Extension (KE) and its southern recirculation gyre (SRG) to global warming are investigated using CMIP5 experiments with a high-resolution climate model MIROC4h. The results show that MIROC4h well reproduces the essential features of the KE system and its low-frequency variations. In three-member-ensemble future climate experiments (with a medium mitigation emissions scenario RCP4.5), the strengths of the KE and its SRG increase, relative to the prescribed historical run with natural and anthropogenic forcing. By investigating the mechanism resulting in these variations of the KE and its SRG, it turns out that wind stress changes and ocean stratification changes both contribute to the enhancement of the KE and its SRG. Specifically, the wind stress changes increase upper ocean momentum in the SRG region. Meanwhile, the increased stratifications hinder the transfer of momentum from the upper ocean to the deeper ocean. Besides, the strengthened ocean stratification could enhance the eddy kinetic energy (EKE) in the downstream KE region, which can feedback to intensify the SRG. As a result, the strength of the SRG increases under global warming condition. Then the intensification of the SRG leads to large acceleration of the KE. Eventually, both the KE and its SRG intensify.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700