用户名: 密码: 验证码:
Highly stable rice-straw-derived charcoal in 3700-year-old ancient paddy soil: evidence for an effective pathway toward carbon sequestration
详细信息    查看全文
  • 作者:Mengxiong Wu ; Min Yang ; Xingguo Han…
  • 关键词:Rice ; straw ; derived charcoal ; Ancient charcoal ; Stability ; Oxidation ; Carbon sequestration
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:23
  • 期:2
  • 页码:1007-1014
  • 全文大小:920 KB
  • 参考文献:Agbagla-Dohnani A, Nozière P, Clément G, Doreau M (2001) In sacco degradability, chemical and morphological composition of 15 varieties of European rice straw. Anim Feed Sci Technol 94:15–27CrossRef
    Ascough P, Bird M, Francis S, Thornton B, Midwood A, Scott A, Apperley D (2011) Variability in oxidative degradation of charcoal: influence of production conditions and environmental exposure. Geochim Cosmochim Acta 75:2361–2378CrossRef
    Baldock JA, Skjemstad J (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31:697–710CrossRef
    Bird M, Moyo C, Veenendaal E, Lloyd J, Frost P (1999) Stability of elemental carbon in a savanna soil. Glob Biogeochem Cycle 13:923–932CrossRef
    Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy 28:386–396CrossRef
    Cao Z, Ding J, Hu Z, Knicker H, Kögel-Knabner I, Yang L, Yin R, Lin X, Dong Y (2006) Ancient paddy soils from the Neolithic age in China’s Yangtze River Delta. Naturwissenschaften 93:232–236CrossRef
    Chia CH, Munroe P, Joseph S, Lin Y (2010) Microscopic characterisation of synthetic Terra Preta. Soil Res 48:593–605CrossRef
    Cusack DF, Chadwick OA, Hockaday WC, Vitousek PM (2012) Mineralogical controls on soil black carbon preservation. Glob Biogeochem Cycle 26:GB2019. doi:10.​1029/​2011GB004109 CrossRef
    Czimczik CI, Masiello CA (2007) Controls on black carbon storage in soils. Glob Biogeochem Cycle 21:GB3005. doi:10.​1029/​2006GB002798 CrossRef
    Ding P, Zheng Y, Chen X, Zhong S, Wang N (2010) The archaeological site of Maoshan lying in Linping. China Cultural Relics News, Yuhang District (in Chinese)
    Dong D, Yang M, Wang C, Wang H, Li Y, Luo J, Wu W (2013) Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field. J Soils Sediments 13:1450–1460CrossRef
    Downie AE, Van Zwieten L, Smernik RJ, Morris S, Munroe PR (2011) Terra Preta Australis: reassessing the carbon storage capacity of temperate soils. Agr Ecosyst Environ 140:137–147CrossRef
    FAO (2013) Rice & climate change. http://​www.​fao.​org/​fileadmin/​templates/​agphome/​documents/​Rice/​rice_​fact_​sheet.​pdf .
    Forbes M, Raison R, Skjemstad J (2006) Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci Total Environ 370:190–206CrossRef
    Glaser B, Amelung W (2003) Pyrogenic carbon in native grassland soils along a climosequence in North America. Glob Biogeochem Cycle 17(2):1064. doi:10.​1029/​2002GB002019 CrossRef
    Glaser B, Birk JJ (2012) State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochim Cosmochim Acta 82:39–51CrossRef
    Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41CrossRef
    Gu F, Wang W, Jing L, Jin Y (2013) Sulfite–formaldehyde pretreatment on rice straw for the improvement of enzymatic saccharification. Bioresour Technol 142:218–224CrossRef
    Guerrero M, Ruiz MP, Millera Á, Alzueta MU, Bilbao R (2008) Characterization of biomass chars formed under different devolatilization conditions: differences between rice husk and eucalyptus. Energy Fuels 22:1275–1284CrossRef
    Hammes K, Smernik RJ, Skjemstad JO, Herzog A, Vogt UF, Schmidt MW (2006) Synthesis and characterisation of laboratory-charred grass straw (Oryza sativa) and chestnut wood (Castanea sativa) as reference materials for black carbon quantification. Org Geochem 37:1629–1633CrossRef
    Hammes K, Torn MS, Lapenas AG, Schmidt MW (2008) Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences 5:1339–1350CrossRef
    Hua L, Wu W, Liu Y, McBride MB, Chen Y (2009) Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environ Sci Pollut Res 16:1–9CrossRef
    Karlen DL, Lal R, Follett RF, Kimble JM, Hatfield JL, Miranowski JM, Cambardella CA, Manale A, Anex RP, Rice CW (2009) Crop residues: the rest of the story. Environ Sci Technol 43:8011–8015CrossRef
    Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253CrossRef
    Kleber M, Nico PS, Plante A, Filley T, Kramer M, Swanston C, Sollins P (2011) Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Glob Change Biol 17:1097–1107CrossRef
    Knoblauch C, Maarifat A-A, Pfeiffer E-M, Haefele SM (2011) Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biol Biochem 43(9):1768–1778CrossRef
    Lehmann J (2003) Amazonian dark earths: origin, properties, management. Springer-Verlag New York Inc
    Leifeld J, Fenner S, Müller M (2007) Mobility of black carbon in drained peatland soils. Biogeosciences 4:425–432CrossRef
    Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’neill B, Skjemstad J, Thies J, Luizao F, Petersen J (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730CrossRef
    Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO, Luizao FJ, Engelhard MH, Neves EG, Wirick S (2008) Stability of biomass-derived black carbon in soils. Geochim Cosmochim Acta 72:6069–6078CrossRef
    Liang B, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213CrossRef
    Lim B, Cachier H (1996) Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays. Chem Geol 131:143–154CrossRef
    Liu Y, Yang M, Wu Y, Wang H, Chen Y, Wu W (2011) Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J Soils Sediments 11:930–939CrossRef
    Llorente M, Glaser B, Turrión MB (2010) Storage of organic carbon and Black carbon in density fractions of calcareous soils under different land uses. Geoderma 159:31–38CrossRef
    Luo Y, Durenkamp M, De Nobili M, Lin Q, Brookes P (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314CrossRef
    Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366–1379CrossRef
    Mao J-D, Johnson R, Lehmann J, Olk D, Neves E, Thompson M, Schmidt-Rohr K (2012) Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. Environ Sci Technol 46:9571–9576CrossRef
    McBeath AV, Smernik RJ (2009) Variation in the degree of aromatic condensation of chars. Org Geochem 40:1161–1168CrossRef
    Mohanty P, Nanda S, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J Anal Appl Pyrolysis 104:485–493CrossRef
    Nguyen BT, Lehmann J (2009) Black carbon decomposition under varying water regimes. Org Geochem 40:846–853CrossRef
    Nguyen BT, Lehmann J, Hockaday WC, Joseph S, Masiello CA (2010) Temperature sensitivity of black carbon decomposition and oxidation. Environ Sci Technol 44:3324–3331CrossRef
    Ohlson M, Dahlberg B, Økland T, Brown KJ, Halvorsen R (2009) The charcoal carbon pool in boreal forest soils. Nat Geosci 2:692–695CrossRef
    Pan G, Li L, Wu L, Zhang X (2004) Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob Change Biol 10:79–92CrossRef
    Reimer PJ, Baillie MG, Bard E, Bayliss A, Beck JW, Bertrand EJH, Blackwell PG, Buck EE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac FG, Manning S, Bronk Ramsey E, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer EE (2004) INTCAL04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46:1029–1058
    Schmidt MW, Skjemstad JO, Jäger C (2002) Carbon isotope geochemistry and nanomorphology of soil black carbon: Black Chernozemic soils in central Europe originate from ancient biomass burning. Glob Biogeochem Cycle 16:70-1-70-8CrossRef
    Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DA (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56CrossRef
    Singh BP, Cowie AL, Smernik RJ (2012a) Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol 46:11770–11778CrossRef
    Singh N, Abiven S, Torn M, Schmidt M (2012b) Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9:2847–2857CrossRef
    Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 47:268–276CrossRef
    Zheng Y (2010) The new advance of the archaeology of the rice cultivation in the lower reach of the Yangtzi River. China Economic History http://​economy.​guoxue.​com/​?​p=​1294 . (in Chinese)
    Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301CrossRef
    Zimmerman AR, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179CrossRef
    Zimmermann M, Bird MI, Wurster C, Saiz G, Goodrick I, Barta J, Capek P, Santruckova H, Smernik R (2012) Rapid degradation of pyrogenic carbon. Glob Change Biol 18:3306–3316CrossRef
  • 作者单位:Mengxiong Wu (1)
    Min Yang (1) (2)
    Xingguo Han (1)
    Ting Zhong (1)
    Yunfei Zheng (3)
    Pin Ding (3)
    Weixiang Wu (1)

    1. Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
    2. State Grid Anhui Economic Research Institute, Hefei, 230031, China
    3. Zhejiang Provincial Institute of Cultural Relics and Archaeology, Hangzhou, 310014, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
Recalcitrant charcoal application is predicted to decelerate global warming through creating a long-term carbon sink in soil. Although many studies have showed high stability of charcoal derived from woody materials, few have focused on the dynamics of straw-derived charcoal in natural environment on a long timescale to evaluate its potential for agricultural carbon sequestration. Here, we examined straw-derived charcoal in an ancient paddy soil dated from ~3700 calendar year before present (cal. year bp). Analytical results showed that soil organic matter consisted of more than 25 % of charcoal in charcoal-rich layer. Similarities in morphology and molecular structure between the ancient and the fresh rice-straw-derived charcoal indicated that ancient charcoal was derived from rice straw. The lower carbon content, higher oxygen content, and obvious carbonyl of the ancient charcoal compared with fresh rice straw charcoal implied that oxidation occurred in the scale of thousands years. However, the dominant aromatic C of ancient charcoal indicated that rice-straw-derived charcoal was highly stable in the buried paddy soil due to its intrinsic chemical structures and the physical protection of ancient paddy wetland. Therefore, it may suggest that straw charcoal application is a potential pathway for C sequestration considering its longevity. Keywords Rice-straw-derived charcoal Ancient charcoal Stability Oxidation Carbon sequestration

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700