用户名: 密码: 验证码:
Integrated Tunable Optofluidics Optical Filter Based on MIM Side-Coupled-Cavity Waveguide
详细信息    查看全文
  • 作者:Zhe Yu (1)
    Ruisheng Liang (1)
    Pixin Chen (1)
    Qiaodong Huang (1)
    Tingting Huang (1)
    Xingkai Xu (1)
  • 关键词:Plasmonic waveguide ; Optofluidics ; Filter ; Integrated optics devices
  • 刊名:Plasmonics
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:7
  • 期:4
  • 页码:603-607
  • 全文大小:335KB
  • 参考文献:1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824-30 CrossRef
    2. Yatsui T, Kourogi M, Ohtsu M (2001) Plasmon waveguide for optical far/near-field conversion. Appl Phys Lett 79(27):4583-585 CrossRef
    3. Wang TB, Wen XW, Yin CP, Wang HZ (2009) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17(26):24096-4101 CrossRef
    4. Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, Lv Y, Lin X, Yao H (2005) Surface plasmon polariton propagation and combination in Y-shaped metallic channels. Opt Express 13(26):10795-0800 CrossRef
    5. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083):508-11 CrossRef
    6. Chen P, Liang R, Huang Q, Yu Z, Xu X (2011) Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure. Opt Express 19(8):7633-639 CrossRef
    7. Huang QD, Liang RS, Chen PX, Wang S, Xu Y (2011) High resonant transmission contrast filter based on the dual side-coupled cavities plasmonic structure. JOSA B 28(8):1851-854 CrossRef
    8. Lee TW, Gray S (2005) Subwavelength light bending by metal slit structures. Opt Express 13(24):9652-659 CrossRef
    9. Lereu AL, Passian A, Goudonnet JP, Thundat T, Ferrell TL (2005) Optical modulation processes in thin films based on thermal effects. Appl Phys Lett 86(15):154101 CrossRef
    10. Liu J, Beals M, Pomerene A, Bernardis S, Sun R, Cheng J, Kimerling L, Michel J (2008) Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nat Photonics 2:433-37 CrossRef
    11. MacDonald KF, Samson ZL, Stockman MI, Zheludev NI (2009) Ultrafast active plasmonics. Nat Photonics 3(1):55-8 CrossRef
    12. Ehlert A, Buettgenbach S (1999) Automatic sensor system for groundwater monitoring network. Proc SPIE 3857:61-9 CrossRef
    13. Monat C, Domachuk P, Grillet C, Collins M, Eggleton BJ, Cronin-Golomb M, Mutzenich S, Mahmud T, Rosengarten G, Mitchell A (2008) Optofluidics: a novel generation of reconfigurable and adaptive compact architectures. Microfluid Nanofluid 4:81-5 CrossRef
    14. Levy U, Campbell K, Groisman A, Mookherjea S, Fainman Y (2006) On chip microfluidic tuning of an optical microring resonator. Appl Phys Lett 88:1111071-111073 CrossRef
    15. Zhu L, Huang Y, Yariv A (2005) Integrated microfluidic variable optical attenuator. Opt Express 13:9916-921 CrossRef
    16. Erickson D, Rockwood T, Emery T, Scherer A, Psaltis D (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31:59-1 CrossRef
    17. Grillet C, Domachuk P, Ta’eed V et al (2005) Compact tunable microfluidic interferometer. Appl Phys Lett 86:0241031-241033
    18. Husband B, Bu M, Evans AGR, Melvin T (2004) Investigation for the operation of an integrated peristaltic micropump. J Michrochem Microeng 14:S64–S69 CrossRef
    19. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113-16 CrossRef
    20. Kerbage C, Eggleton BJ (2004) Manipulating light by microfluidic motion in microstructured optical fibers. Opt Fiber Tech 10:133-49 CrossRef
    21. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev 6(12):4370-379 CrossRef
    22. Wang B, Wang G (2005) Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl Phys Lett. doi:10.1063/1.1954880
  • 作者单位:Zhe Yu (1)
    Ruisheng Liang (1)
    Pixin Chen (1)
    Qiaodong Huang (1)
    Tingting Huang (1)
    Xingkai Xu (1)

    1. Laboratory of Photonic Information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, People’s Republic of China
  • ISSN:1557-1963
文摘
A tunable wavelength filter based on plasmonic metal–dielectric–metal waveguide with optofluidics pump system has been proposed and numerically investigated. The finite difference time domain method with perfectly matched layer-absorbing boundary condition is adopted to simulate and study their properties. An analytical solution to the resonant condition of the structure is derived by means of the cavity theory. It is found that the resonant wavelength of the filter is easily tuned in a broadband by manipulating the fluid filled in the cavity. Both analytical and simulative results reveal that the resonant wavelengths are proportional to the volume and refractive index of liquid in the cavity and are related to the structure of the filter. The resonant wavelengths of this structure can be changed from 1,106 to around 1,800?nm in this paper. The waveguide filter may become a choice for the design of devices in highly integrated optical circuits.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700