用户名: 密码: 验证码:
Effects of inlet circumferential fluctuation on the sweep aerodynamic performance of axial fans/compressors
详细信息    查看全文
  • 作者:Xingmin Gui (1)
    Fang Zhu (1)
    Ke Wan (1)
    Donghai Jin (1)
  • 关键词:turbomachinery ; fans/compressors ; sweep aerodynamics ; quasi ; 3D method ; 3D flow
  • 刊名:Journal of Thermal Science
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:22
  • 期:5
  • 页码:383-394
  • 全文大小:1167KB
  • 参考文献:1. Rolls-Royce, Trent 1000 鈥?the engine walkthrough, lectured in BUAA, March (2006), Beijing.
    2. Gui Xingmin, Zhu Fang, Jin Donghai, Aerodynamic Design Report of Tested Scaled Fan, Beijing University of Aeronautics and Astronautics, Beijing, (2012).
    3. Beatty, L.A., Savage, M., and Emery, J.C, Low Speed Cascade Tests of Two 45 Degree Swept Compressor Blades With Constant Spanwise Loading, NACA RM L53L07, (1954).
    4. Goodwin, W.R., Effect of Sweep on Performance of Compressor Blade Sections as Indicated by Swept Blade Rotor, Unswept Blade Rotor and Cascade Tests. NACA TN 4062, (1957).
    5. Smith, L.H. and Yeh, H., Sweep and Dihedral Effect in Axial Flow Turbomachinery. ASME Journal of Basic Engineering, Vol. 85, (1963).
    6. Lewis, R.I., Hill, J.M., The Influence of Sweep and Dihedral in Turbomachinery Blade rows. Journal of Mechanical Engineering Science, Vol. 13(4), (1971).
    7. Bliss, D.B., Hayden, R.E., Murray, B.S., Schwer, P.G., Design Considerations for a Novel Low Source Noise Transonic Fan Stage, AIAA paper 76-577, Palo Alto, USA, (1976).
    8. Lucas, R.G., Woodard, R.P., and MacKinnon, M.J., Acoustic Evaluation of a Novel Swept-Rotor Fan, AIAA paper 78-1121, Seattle, USA (1978).
    9. Hayden, R.E., Bliss, D.B., Murray, B.S., Chandiramani, K.L. Smullin, J.I., Schwaar, P.G., Analysis and Design of a High Speed Low Noise Aircraft Fan Incorporating Swept Leading Edge Rotor and Stator Blades, NASA CR-135092, (1978).
    10. Neubert, R.J., Hobbs, D.E., Weingold, H.D., Application of Sweep to Improve the Efficiency of a Transonic Fan: Part 1-Design. AIAA paper 90-195, Orlando, USA (1990).
    11. Rabe, D., Hoying, D., Koff, S., Application of Sweep to Improve Efficiency of a Transonic Fan: Part II-Performance and Laser Test Results, AIAA paper 91-2544, Sacramento, USA (1991).
    12. Creason, T.L., Baghdadi, S., Design and Test of a Low Aspect Ratio Fan Stage. AIAA paper 88-2816, Boston, USA (1988).
    13. Wennerstrom, A.J., Frost, G.R., Design of a 1500ft/sec Transonic High-Through-Flow Single-Stage Axial-Flow Compressor with Low Hub/Tip Ratio, AFARL-TR-76-59, AD-B016386, Ohio, USA (1976).
    14. Wennerstrom, A.J., Derose, R.D., Law, C.W., Investigation of a 1500ft/sec Transonic High-Through-Flow Single-Stage Axial-Flow Compressor with Low Hub/Tip Ratio, AFARL-TR-76-92, AD-B016506, Ohio, USA (1976).
    15. Wennerstrom, A.J., Experimental Study of a High-Through-Flow Transonic Axial Compressor Stage. ASME Journal of Engineering for Gas Turbines and Power, Vol.106(3), (1984).
    16. Wennerstrom, A.J. and Puterbaugh, S.L., A Three-Dimensional Model for the Prediction of Shock Losses in Compressor Blade Rows, ASME Journal of Engineering for Gas Turbines and Power, Vol.106(2), (1984).
    17. Hah, C, and Wennerstrom, A.J., Three-Dimensional Flowfields Inside a Transonic Compressor With Swept Blades. ASME Journal of Turbomachinery, Vol.113, (1991).
    18. Copenhaver, W.W., Hah, C, and Puterbaugh, S.L., Three-Dimensional Flow Phenomena in a Transonic, High-Through-Flow, Axial-Flow Compressor Stage. ASME Journal of Turbomachinery, Vol.115, (1993).
    19. Puterbaugh, S.L., Copenhaver, W.W., Hah, C., Wennerstrom, A. J., A Three-Dimensional Shock Loss Model Applied to an Aft-Swept, Transonic Compressor Rotor. ASME Journal of Turbomachinery, Vol.119(3), (1997).
    20. Wadia, A.R., Szucs, P.N., Crall, D.W., Inner Workings of Aerodynamic Sweep. ASME Journal of Turbomachinery, Vol.120(4), (1998).
    21. Hah, C., Puterbaugh, S.L., Wadia, A. R., Control of Shock Structure and Secondary Flow Field Inside Transonic Compressor Rotors Through Aerodynamic Sweep. ASME paper 98-GT-561, Stockholm, Sweden (1998).
    22. Denton, J.D., Xu L., The effects of lean and sweep on transonic fan performance. ASME paper GT-2002-30327, Amsterdam, The Netherlands (2002).
    23. Denton, J.D., Xu, L., The exploitation of three-dimensional flow in turbomachinery design. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol.213, (1998).
    24. Gui Xingmin, Zhou Baihao, Overview on Aerodynamics of the Transonic Inlet Swept and Curved Blade in Compression System, Journal of Aerospace Power, Vol.10(4), pp.407鈥?11, (1995).
    25. Shan Peng, Gui Xingmin, Final Design and Experiment Report of Single Stage Transonic Fan ATS-2, Defense Technology Report, GF-A0041935, Beijing University of Aeronautics and Astronautics, Beijing (2000).
    26. Li Xiaojuan, Performance Numerical Investigation and Design of Fan/Compressor, Ph.D. thesis, Beijing University of Aeronautics and Astronautics, Beijing (2008).
    27. Jin Hailiang, Jin Donghai, Zhu Fang, Wan Ke, Gui Xingmin, Design of a Highly Loaded Transonic Two-stage Fan Using Swept and Bowed Blading, ASME paper GT2011-45988, Vancouver, Canada (2011)
    28. Zhu Fang, Jin Donghai, Gui Xingmin, Design and Numerical Investigation of High-Through-Flow Transonic Fans with Swept and Straight Blade, International Gas Turbine Congress, Osaka, Japan (2011).
    29. Benini, E., Biollo, R., Aerodynamics of Swept and Leaned Transonic Compressor-Rotors, Applied Energy, Vol. 84(10), pp. 1012鈥?027, (2007). CrossRef
    30. Ramakrishna, P.V., Govardhan, M., Numerical Study of the Stagger Angle Effects in Forward Swept Axial Compressor Rotor Passages, ASME paper GT2010-23160, Glasgow, UK (2010).
    31. Gallimore, S.J., Bolger, J.J., Cumpsty, N.A., Taylor, M.J., Wright, P.I., Place, J.M.M., The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading 鈥?Part I: University Research and Methods Development. ASME Journal of Turbomachinery, Vol. 124, pp.521鈥?32, (2002). CrossRef
    32. Gallimore, S.J., Bolger, J.J., Cumpsty, N.A., Taylor, M.J., Wright, P.I., Place, J.M.M., The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading 鈥?Part II: Low and High-Speed Designs and Test Verification. ASME Journal of Turbomachinery, Vol. 124, pp.533鈥?41, (2002). CrossRef
    33. Wu Chunghua, A General Through-Flow Theory of Fluid Flow with Subsonic or Supersonic Velocity in Turbomachines of Arbitrary Hub and Casing Shapes. NACA TN 2302, (1951).
    34. Wu Chunghua, A General Theory of Three-Dimensional Flow in Subsonic or Supersonic Turbomachines in Radial, Axial and Mixed-Flow Types. NACA TN2604, (1952).
    35. Horlock, J.H., and Denton, J.D., A Review of Some Early Design Practice Using Computational Fluid Dynamics and a Current Perspective, ASME Journal of Turbomachinery, Vol.127(1), (2005).
    36. Novak, R.A., Streamline Curvature Computing Procedures for Fluid-Flow Problems. Journal of Engineering for Power. ASME, Journal of Engineering for Power, Vol. 89(4), pp. 478鈥?90, (1967).
    37. Smith, Jr., L.H., The Radial-Equilibrium Equation of Turbomachinery, ASME Journal of Engineering for Power, Vol. 88(1), pp. 1鈥?2, (1966). CrossRef
    38. Li Genshen, Chen Naixing, Qiang Guofang, Aerothermodynamics of Axial Turbomachinery in Marine Gas Turbine: Principle, Design and Test. National Defence Industry Press, Beijing (1980).
    39. Gui Xingmin, The Research on the Model of Contrallable Shock Wave Used in the Design of Transonic Axial Fan/Compressor Stage. Ph.D. thesis, Beijing University of Aeronautics and Astronautics, Beijing (1993).
    40. Gui Xingmin, Zhou Sheng, A Transonic Compressor Design Methodology Including the Influence of 3D Passage Shock Waves, ASME paper 99-GT-78, Indianapolis, USA (1999).
    41. Simon, J.F., Contribution to Throughflow Modelling for Axial Flow Turbomachines, Ph D. thesis, University of Liege, Belgium, (2007).
    42. Jin Hailiang, Application of Circumferentional Average method in Multistage Axial Fan/Compressor Design and Analysis, Ph.D. thesis, Beijing University of Aeronautics and Astronautics, Beijing (2011).
    43. Thomas, J.P., L茅onard, O., Toward a High Order Throughflow鈥擨nvestigation of the Nonlinear Harmonic Method Coupled With an Immersed Boundary Method for the Modeling of the Circumferential Stresses. ASME Journal of Turbomachinery, Vol. 134(1), (2012).
    44. Wan Ke, Jin Hailiang, Jin Donghai, Gui Xingmin, Influence of Non-Axisymmetric Terms on Circumferentially Averaged Method in Fan/Compressor. Journal of Thermal Science, Vol. 22(1), pp.13鈥?2, (2013). CrossRef
    45. Baralon, S., Erikson, L-E., Hall, U., Evaluation of high-order terms in the throughflow approximation using 3D Navier-Stokes computations of a transonic compressor rotor, ASME Paper 99-GT-74, Indianapolis, (1999).
    46. NUMECA Int., Numeca鈥檚 Flow Integrated Environment for Turbomachinery and Internal Flows, User Manual, Numeca Int., Brussels, Belgium, (2000).
    47. Wennerstrom, A.J., Design of highly loaded axial-flow fans and compressors, White River Junction: Concepts ETI, Inc., Vermont, USA (2000).
  • 作者单位:Xingmin Gui (1)
    Fang Zhu (1)
    Ke Wan (1)
    Donghai Jin (1)

    1. Aero-Engine Simulation Research Center, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
  • ISSN:1993-033X
文摘
Swept blades have been widely used in the transonic fan/compressor of aircraft engines with the aids of 3D CFD simulation since the design concept of controlling the shock structure was firstly proposed and successfully tested by Dr. Wennerstrom in the 1980s. However, some disadvantage phenomenon has also been induced by excessively 3D blade geometries on the structure stress insufficiency, vibration and reliability. Much confusion in the procedure of design practice leading us to recognize a new view on the flow mechanism of sweep aerodynamical induction: the new radial equilibrium established by the influence of inlet circumferential fluctuation (CF) changes the inlet flows of blading and induces the performance modification of axial fans/compressors blade. The view is verified by simplified models through numerical simulation and circumferentially averaged analysis in the present paper. The results show that the CF source items which originate from design parameters, such as the spanwise distributions of the loading and blading geometries, contribute to the changing of averaged incidence spanwise distribution, and further more affect the performance of axial fans/compressors with swept blades.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700