用户名: 密码: 验证码:
Redox potential and microbial functional gene diversity in wetland sediments under simulated warming conditions: implications for phosphorus mobilization
详细信息    查看全文
  • 作者:Zhijian Zhang (1) (2)
    Hang Wang (1)
    Jizhong Zhou (3) (5)
    Hongyi Li (1)
    Zhili He (3) (5)
    Joy D. Van Nostrand (3) (5)
    Zhaode Wang (4)
    Xinhua Xu (1)
  • 关键词:Biogeochemical cycling ; Functional gene ; Warming ; Freshwater wetland
  • 刊名:Hydrobiologia
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:743
  • 期:1
  • 页码:221-235
  • 全文大小:795 KB
  • 参考文献:1. Achtnich, C., F. Bak & R. Conrad, 1995. Competition for electron-donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biology and Fertility of Soils 19(1): 65-2. CrossRef
    2. Allison, S. D. & K. K. Treseder, 2008. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology 14(12): 2898-909. CrossRef
    3. Angel, R., P. Claus & R. Conrad, 2012. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME Journal 6(4): 847-62. CrossRef
    4. Bond-Lamberty, B. & A. Thomson, 2010. Temperature-associated increases in the global soil respiration record. Nature 464(7288): U132–U579. CrossRef
    5. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73(3): 1045-055. CrossRef
    6. Bradford, M. A., C. A. Davies, S. D. Frey, T. R. Maddox, J. M. Melillo, J. E. Mohan, J. F. Reynolds, K. K. Treseder & M. D. Wallenstein, 2008. Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters 11(12): 1316-327. CrossRef
    7. Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85(7): 1771-789. CrossRef
    8. Brune, A., P. Frenzel & H. Cypionka, 2000. Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiology Reviews 24(5): 691-10.
    9. Cheng, W. G., H. Sakai, M. Matsushima, K. Yagi & T. Hasegawa, 2010. Response of the floating aquatic fern / Azolla filiculoides to elevated CO2, temperature, and phosphorus levels. Hydrobiologia 656(1): 5-4. CrossRef
    10. Conley, D. J., S. Bjorck, E. Bonsdorff, J. Carstensen, G. Destouni, B. G. Gustafsson, S. Hietanen, M. Kortekaas, H. Kuosa, H. E. M. Meier, B. Muller-Karulis, K. Nordberg, A. Norkko, G. Nurnberg, H. Pitkanen, N. N. Rabalais, R. Rosenberg, O. P. Savchuk, C. P. Slomp, M. Voss, F. Wulff & L. Zillen, 2009. Hypoxia-related processes in the Baltic Sea. Environmental Science and Technology 43(10): 3412-420. CrossRef
    11. Cypionka, H., 1994. Novel metabolic capacities of sulfate-reducing bacteria, and their activities in microbial mats. In Stal, L. J. & P. Caumette (eds), Microbial Mats. Springer Verlag, Berlin: 367-76. CrossRef
    12. Diaz, R. J. & R. Rosenberg, 2008. Spreading dead zones and consequences for marine ecosystems. Science 321(5891): 926-29. CrossRef
    13. Feuchtmayr, H., R. Moran, K. Hatton, L. Connor, T. Heyes, B. Moss, I. Harvey & D. Atkinson, 2009. Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms. Journal of Applied Ecology 46(3): 713-23. CrossRef
    14. Fierer, N., J. W. Leff, B. J. Adams, U. N. Nielsen, S. T. Bates, C. L. Lauber, S. Owens, J. A. Gilbert, D. H. Wall & J. G. Caporaso, 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America 109(52): 21390-1395. CrossRef
    15. Fierer, N., J. Ladau, J. C. Clemente, J. W. Leff, S. M. Owens, K. S. Pollard, R. Knight, J. A. Gilbert & R. L. McCulley, 2013. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soil
  • 作者单位:Zhijian Zhang (1) (2)
    Hang Wang (1)
    Jizhong Zhou (3) (5)
    Hongyi Li (1)
    Zhili He (3) (5)
    Joy D. Van Nostrand (3) (5)
    Zhaode Wang (4)
    Xinhua Xu (1)

    1. College of Environmental and Resource Science, Zhejiang University, 886th Yuhangtang Ave, Hangzhou, 310058, China
    2. China Academy of West Region Development, Zhejiang University, Hangzhou, 310058, China
    3. Department of Microbiology and Plant Science, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
    5. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
    4. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
  • ISSN:1573-5117
文摘
Microbial-driven biogeochemical cycles in wetlands impacted by global warming pose a potential downstream eutrophication risk. However, the consequences of ongoing warming on the functional and metabolic potential of sediment microbial communities are largely unknown. We incubated sediment samples under both ambient temperature conditions (control) and simulated warming conditions of 5°C above ambient temperature (warmed) using a novel field microcosm system. In warmed samples, we observed in situ a decreased thickness of the oxidized sediment layer and associated lower sediment redox potential. GeoChip 4.0, a comprehensive functional gene microarray, demonstrated that many functional genes that are involved in oxidation–reduction reactions and in phosphorus (P) degradation were preferentially enriched under warming conditions. The enriched genes included those genes encoding carbon monoxide dehydrogenase, acetyl-CoA carboxylase biotin carboxylase (ppc), and ribulose-1,5-bisphosphate carboxylase (Rubisco) for carbon fixation; nitrate reductases (narG) and nitrous oxide reductases (nosZ) for denitrification; cytochrome c for metal reduction; and exopolyphosphatase (ppx) for polyphosphate degradation. The redox potential was one of the most significant parameters linked to microbial functional gene structure. These results demonstrate that the enhanced hypoxia and anaerobic metabolic pathways accelerated sediment P mobilization in freshwater wetland subject to warming, raising the potential of water eutrophication.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700