用户名: 密码: 验证码:
A comprehensive assessment of MODIS-derived GPP for forest ecosystems using the site-level FLUXNET database
详细信息    查看全文
  • 作者:Xuguang Tang ; Hengpeng Li ; Ni Huang ; Xinyan Li ; Xibao Xu…
  • 关键词:MOD17A2 ; Forest ecosystem ; Grow primary production ; Assessment
  • 刊名:Environmental Earth Sciences
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:74
  • 期:7
  • 页码:5907-5918
  • 全文大小:1,147 KB
  • 参考文献:Abbas MR, Bin AB, Abbas TR (2015) Use MODIS satellite data to study new phenomena of underground fire in the Al Ruhban oasis in Al Najaf city, Iraq. Environ Earth Sci 73(7):3475鈥?485. doi:10.鈥?007/鈥媠12665-014-3632-8 CrossRef
    Archibald SA, Kirton A, Van der Merwe MR, Scholes RJ, Williams CA (2009) Drivers of inter-annual variability in net ecosystem exchange in a semi-arid savanna ecosystem, South Africa. Biogeosciences 6(2):251鈥?66. doi:10.鈥?194/鈥媌gd-5-3221-2008 CrossRef
    Aubinet M, Heinesch B, Longdoz B (2002) Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections, heterogeneity of the site and inter-annual variability. Glob Change Biol 8(11):1053鈥?071. doi:10.鈥?046/鈥媕.鈥?365-2486.鈥?002.鈥?0529.鈥媥 CrossRef
    Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329(5993):834鈥?38. doi:10.鈥?126/鈥媠cience.鈥?184984 CrossRef
    Berbigiera P, Bonnefonda JM, Mellmann P (2001) CO2 and water vapour fluxes for 2聽years above Euroflux forest site. Agric For Meteorol 108(3):183鈥?97. doi:10.鈥?016/鈥婼0168-1923(01)00240-4 CrossRef
    Betts AK, Zhao M, Dirmeyer PA, Beljaars ACM (2006) Comparison of ERA40 and NCEP/DOE near-surface data sets with other ISLSCP-II data sets. J Geophys Res (1984鈥?012). doi:10.鈥?029/鈥?006JD007174
    Blonquist J, Montzka SA, Yakir D, Desai AR, Dragoni D (2010) The potential of carbonyl sulfide as a tracer for gross primary productivity at flux tower sites. AGU Fall Meeting B21G鈥?7
    Carvalhais N, Reichstein M, Ciais P, Collatz GJ, Mahecha MD (2010) Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints. Glob Change Biol 16(10):2813鈥?829. doi:10.鈥?111/鈥媕.鈥?365-2486.鈥?010.鈥?2173 CrossRef
    Chasmer L, Barr A, Hopkinson C, McCaughey H, Treitz P (2009) Scaling and assessment of GPP from MODIS using a combination of airborne lidar and eddy covariance measurements over jack pine forests. Remote Sens Environ 113(1):82鈥?3. doi:10.鈥?016/鈥媕.鈥媟se.鈥?008.鈥?8.鈥?09 CrossRef
    Coops NC, Black TA, Jassal RPS, Trofymow JA, Morgenstern K (2007) Comparison of MODIS, eddy covariance determined and physiologically modelled gross primary production (GPP) in a Douglas-fir forest stand. Remote Sens Environ 107(3):385鈥?01. doi:10.鈥?016/鈥媕.鈥媟se.鈥?006.鈥?9.鈥?10 CrossRef
    Desai AR (2010) Climatic and phenological controls on coherent regional interannual variability of carbon dioxide flux in a heterogeneous landscape. J Geophys Res. doi:10.鈥?029/鈥?010JG001423
    Don A, Rebmann C, Kolle O, Scherer-Lorenzen M, Schulze ED (2009) Impact of afforestation- associated management changes on the carbon balance of grassland. Glob Change Biol 15(8):1990鈥?002. doi:10.鈥?111/鈥媕.鈥?365-2486.鈥?009.鈥?1873.鈥媥 CrossRef
    Dragoni D, Schmid HP, Wayson CA, Potter H, Grimmond CSB (2011) Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Glob Change Biol 17(2):886鈥?97. doi:10.鈥?111/鈥媕.鈥?365-2486.鈥?010.鈥?2281.鈥媥 CrossRef
    FAO (2010) Global forest resources assessment 2010. Food and Agriculture Organization of the United Nations, Rome
    Foody GM, Cutler ME, Mcmorrow J, Pelz D, Tangki H (2001) Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Glob Ecol Biogeogr 10(4):379鈥?87. doi:10.鈥?046/鈥媕.鈥?466-822X.鈥?001.鈥?0248.鈥媥 CrossRef
    Foody GM, Boyd DS, Cutler ME (2003) Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens Environ 85(4):463鈥?74. doi:10.鈥?016/鈥婼0034-4257(03)00039-7 CrossRef
    Garbulsky MF, Pe帽uelas J, Papale D, Filella I (2008) Remote estimation of carbon dioxide uptake of terrestrial ecosystems. Glob Change Biol 14(12):2860鈥?867. doi:10.鈥?111/鈥媕.鈥?365-2486.鈥?008.鈥?1684.鈥媥 CrossRef
    Gebremichael M, Barros AP (2006) Evaluation of MODIS gross primary productivity (GPP) in tropical monsoon regions. Remote Sens Environ 100(2):150鈥?66. doi:10.鈥?016/鈥媕.鈥媟se.鈥?005.鈥?0.鈥?09 CrossRef
    Granier A, Pilegaard K, Jensen NO (2002) Similar net ecosystem exchange of beech stands located in France and Denmark. Agric For Meteorol 114(1):75鈥?2. doi:10.鈥?016/鈥婼0168-1923(02)00137-5 CrossRef
    Grant RF, Hutyra LR, de Oliveira RC, Munger JW, Saleska SR (2009) Modeling the carbon balance of Amazonian rain forests: resolving ecological controls on net ecosystem productivity. Ecol Monogr 79(3):445鈥?63. doi:10.鈥?890/鈥?8-0074.鈥? CrossRef
    Graven HD, Keeling RF, Piper SC, Patra PK, Stephens BB (2013) Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341(6150):1085鈥?089. doi:10.鈥?126/鈥媠cience.鈥?239207 CrossRef
    Gr眉nwald T, Bernhofer C (2007) A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. Tellus B 59(3):387鈥?96. doi:10.鈥?111/鈥媕.鈥?600-0889.鈥?007.鈥?0259.鈥媥 CrossRef
    Heinsch FA, Zhao M, Running SW, Kimball JS, Nemani RR (2006) Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE T Geosci Remote 44(7):1908鈥?925. doi:10.鈥?109/鈥婽GRS.鈥?005.鈥?53936 CrossRef
    Houghton RA, Hackler JL, Lawrence KT (1999) The US carbon budget: contributions from land-use change. Science 285(5427):574鈥?78. doi:10.鈥?126/鈥媠cience.鈥?85.鈥?427.鈥?74 CrossRef
    Huang CC, Li YM, Yang H, Sun DY, Yu ZY, Zhang Z, Chen X, Xu LJ (2014) Detection of algal bloom and factors influencing its formation in Taihu lake from 2000 to 2011 by MODIS. Environ Earth Sci 71(8):3705鈥?714. doi:10.鈥?007/鈥媠12665-013-2764-6 CrossRef
    Huete A, Didan K, Miura T, Rodriguez EP, Gao X (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1鈥?):195鈥?13. doi:10.鈥?016/鈥婼0034-4257(02)00096-2 CrossRef
    Huete AR, Restrepo-Coupe N, Ratana P, Didan K, Saleska SR (2008) Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in Monsoon Asia. Agric For Meteorol 148(5):748鈥?60. doi:10.鈥?016/鈥媕.鈥媋grformet.鈥?008.鈥?1.鈥?12 CrossRef
    Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ (2002) NCEP-DOE AMIP-II REANALYSIS (R-2). B Am Meteorol Soc 83(11):1631鈥?643. doi:10.鈥?175/鈥婤AMS-83-11-1631 CrossRef
    Kanniah KD, Beringer J, Hutley LB, Tapper NJ, Zhu X (2009) Evaluation of Collections 4 and 5 of the MODIS Gross Primary Productivity product and algorithm improvement at a tropical savanna site in northern Australia. Remote Sens Environ 113(9):1808鈥?822. doi:10.鈥?016/鈥媕.鈥媟se.鈥?009.鈥?4.鈥?13 CrossRef
    Kerr RA (2011) Vital details of global warming are eluding forecasters. Science 334(6053):173鈥?74. doi:10.鈥?126/鈥媠cience.鈥?34.鈥?053.鈥?73 CrossRef
    Knohl A, Schulze ED, Kolle O, Buchmann N (2003) Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany. Agric For Meteorol 118(3):151鈥?67. doi:10.鈥?016/鈥婼0168-1923(03)00115-1 CrossRef
    Lagergren F, Eklundh L, Grelle A, Lundblad M, M枚lder M, Lankreijer H, Lindroth A (2005) Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant Cell Environ 28(3):412鈥?23. doi:10.鈥?111/鈥媕.鈥?365-3040.鈥?004.鈥?1280.鈥媥 CrossRef
    Li ZQ, Xu JC, Shilpakar R, Ma X (2014) Mapping wetland cover in the greater Himalayan region: a hybrid method combining multispectral and ecological characteristics. Environ Earth Sci 71(3):1083鈥?094. doi:10.鈥?007/鈥媠12665-013-2512-y CrossRef
    Lloyd J, Taylor J (1994) On the temperature dependence of soil respiration. Funct Ecol 8(3):315鈥?23. doi:10.鈥?307/鈥?389824 CrossRef
    Myneni RB, Ramakrishna R, Nemani R, Running SW (1997) Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE T Geosci Remote 35(6):1380鈥?393. doi:10.鈥?109/鈥?6.鈥?49788 CrossRef
    Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE (2011) A large and persistent carbon sink in the world鈥檚 forests. Science 333(6045):988鈥?93. doi:10.鈥?126/鈥媠cience.鈥?201609 CrossRef
    Pan S, Tian H, Dangal SR, Ouyang Z, Tao B (2014) Modeling and monitoring terrestrial primary production in a changing global environment: toward a multiscale synthesis of observation and simulation. Adv Meteorol. doi:10.鈥?155/鈥?014/鈥?65936
    Papale D, Valentini R (2003) A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob Change Biol 9(4):525鈥?35. doi:10.鈥?046/鈥媕.鈥?365-2486.鈥?003.鈥?0609.鈥媥 CrossRef
    Pourtaghi ZS, Pourghasemi HR, Rossi M (2015) Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran. Environ Earth Sci 73(4):1515鈥?533. doi:10.鈥?007/鈥媠12665-014-3589-7 CrossRef
    Propastin P, Ibrom A, Knohl A, Erasmi S (2012) Effects of canopy photosynthesis saturation on the estimation of gross primary productivity from MODIS data in a tropical forest. Remote Sens Environ 121(6):252鈥?60. doi:10.鈥?016/鈥媕.鈥媟se.鈥?012.鈥?2.鈥?05 CrossRef
    Rahman AF, Sims DA, Cordova VD, EI-Masri BZ (2005) Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophys Res Lett 32(19):L19404. doi:10.鈥?029/鈥?005GL024127 CrossRef
    Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11(9):1424鈥?439. doi:10.鈥?111/鈥媕.鈥?365-2486.鈥?005.鈥?01002.鈥媥 CrossRef
    Richardson AD, Anderson RS, Arain MA, Barr AG, Bohrer G (2012) Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob Change Biol 18(2):566鈥?84. doi:10.鈥?111/鈥媕.鈥?365-2486.鈥?011.鈥?2562.鈥媥 CrossRef
    Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54(6):547鈥?60. doi:10.鈥?641/鈥?006-3568 CrossRef
    Saigusa N, Yamamoto S, Hirata R, Ohtani Y, Ide R (2008) Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agric For Meteorol 148(5):700鈥?13. doi:10.鈥?016/鈥媕.鈥媋grformet.鈥?007.鈥?2.鈥?06 CrossRef
    Seiler TJ, Rasse DP, Li JH, Dijkstra P, Anderson HP (2009) Disturbance, rainfall and contrasting species responses mediated aboveground biomass response to 11聽years of CO2 enrichment in a Florida scrub-oak ecosystem. Glob Change Biol 15(2):356鈥?67. doi:10.鈥?111/鈥媕.鈥?365-2486.鈥?008.鈥?1740.鈥媥 CrossRef
    Sims DA, Rahman AF, Cordova VD, El-Masri BZ, Baldocchi DD (2008) A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens Environ 112(4):1633鈥?646. doi:10.鈥?016/鈥媕.鈥媟se.鈥?007.鈥?8.鈥?04 CrossRef
    Sj枚str枚m M, Zhao M, Archibald S, Arneth A, Cappelaere B (2013) Evaluation of MODIS gross primary productivity for Africa using eddy covariance data. Remote Sens Environ 131(4):275鈥?86. doi:10.鈥?016/鈥媕.鈥媟se.鈥?012.鈥?2.鈥?23 CrossRef
    Tan B, Woodcock CE, Hu J, Zhang P, Ozdogan M (2006) The impact of gridding artifacts on the local spatial properties of MODIS data: implications for validation, compositing, and band-to-band registration across resolutions. Remote Sens Environ 105(2):98鈥?14. doi:10.鈥?016/鈥媕.鈥媟se.鈥?006.鈥?6.鈥?08 CrossRef
    Tang XG, Wang ZM, Xie J, Liu DW, Desai AR (2013) Monitoring the seasonal and interannual variation of the carbon sequestration in a temperate deciduous forest with MODIS time series data. For Ecol Manag 306(10):150鈥?60. doi:10.鈥?016/鈥媕.鈥媐oreco.鈥?013.鈥?6.鈥?32 CrossRef
    Turner DP, Urbanski S, Bremer D, Wofsy SC, Meyers T (2003) A cross-biome comparison of daily light use efficiency for gross primary production. Glob Change Biol 9(3):383鈥?95. doi:10.鈥?046/鈥媕.鈥?365-2486.鈥?003.鈥?0573.鈥媥 CrossRef
    Verma M, Friedl MA, Richardson AD, Kiely G, Cescatti A (2014) Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set. Biogeosciences 11(8):2185鈥?200. doi:10.鈥?194/鈥媌gd-10-11627-2013 CrossRef
    Wang X, Ma M, Li X, Song Y, Tan J (2013) Validation of MODIS-GPP product at 10 flux sites in northern China. Int J Remote Sens 34(2):587鈥?99. doi:10.鈥?080/鈥?1431161.鈥?012.鈥?15774 CrossRef
    Williams CA, Hanan NP, Baker I, Collatz GJ, Berry J (2008) Interannual variability of photosynthesis across Africa and its attribution. J Geophys Res. doi:10.鈥?029/鈥?008JG000718
    Wu CY, Munger JW, Niu Z, Kuang D (2010) Comparison of multiple models for estimating gross primary production using MODIS and eddy covariance data in Harvard Forest. Remote Sens Environ 114(12):2925鈥?939. doi:10.鈥?016/鈥媕.鈥媟se.鈥?010.鈥?7.鈥?12 CrossRef
    Wu C, Chen JM, Huang N (2011) Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: evaluation and calibration. Remote Sens Environ 115(12):3424鈥?435. doi:10.鈥?016/鈥媕.鈥媟se.鈥?011.鈥?8.鈥?06 CrossRef
    Xiao J, Zhuang Q, Law BE, Chen J, Baldocchi DD (2010) A continuous measure of gross primary production for the conterminous US derived from MODIS and AmeriFlux data. Remote Sens Environ 114(3):576鈥?91. doi:10.鈥?016/鈥媕.鈥媟se.鈥?009.鈥?0.鈥?13 CrossRef
    Yang FH, Ichii K, White MA, Hashimoto H, Michaelis AR (2007) Developing a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through support vector machine approach. Remote Sens Environ 110(1):109鈥?22. doi:10.鈥?016/鈥媕.鈥媟se.鈥?007.鈥?2.鈥?16 CrossRef
    Yuan W, Liu S, Yu G, Bonnefond JM, Chen J (2010) Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens Environ 114(7):1416鈥?431. doi:10.鈥?016/鈥媕.鈥媟se.鈥?010.鈥?1.鈥?22 CrossRef
    Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329(5994):940鈥?43. doi:10.鈥?126/鈥媠cience.鈥?192666 CrossRef
    Zhao M, Running SW (2011) Response to comments on 鈥淒rought-induced reduction in global terrestrial net primary production from 2000 through 2009鈥? Science 333(6046):1093. doi:10.鈥?126/鈥媠cience.鈥?199169 CrossRef
    Zhao M, Running SW, Nemani RR (2006) Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J Geophys Res. doi:10.鈥?029/鈥?004JG000004
  • 作者单位:Xuguang Tang (1) (2)
    Hengpeng Li (1)
    Ni Huang (2)
    Xinyan Li (1)
    Xibao Xu (1)
    Zhi Ding (3)
    Jing Xie (4)

    1. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
    2. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, 100101, China
    3. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
    4. Department of Geography, University of Zurich, 8006, Zurich, Switzerland
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
Accurate and continuous monitoring of forest production is critical for quantifying the dynamics of regional-to-global carbon cycles. MOD17A2 provides high frequency observations of terrestrial gross primary productivity (GPP) and is widely used to evaluate the spatiotemporal variability and responses to changing climate. However, the effectiveness of the Moderate Resolution Imaging Spectroradiometer (MODIS) in measuring GPP is directly constrained by the large uncertainties in the modeling process, specifically for complicated and extensive forest ecosystems. Although there have been plenty of studies to verify the MODIS GPP product with ground-based measurements covering a range of biome types, few have comprehensively validated the performance of MODIS estimates (C5.5) for diverse forests. Thus, this study examined the degree of correspondence between the MODIS-derived GPP and the EC-measured GPP at seasonal and interannual time scales for the main forest ecosystems, encompassing evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), and mixed forest (MF) relying on 16 flux towers with a total dataset of 68 site-years. Overall, the site-specific evaluation of multi-year mean annual GPP estimates indicates that the current MODIS product works more significantly for DBF and MF, less for ENF, and least for EBF. Except for the tropical forest, MODIS estimates could capture the broad trends of GPP at an 8-day time scale for the other sites. At the seasonal time scale, the highest performance was observed in ENF, followed by MF and DBF, and the least performance was observed in EBF. Trend analyses also revealed the weak performance in EBF and DBF. This study suggested that current MODIS GPP estimates still need to improve the quality of different upstream inputs in addition to the algorithm for accurately quantifying forest production. Keywords MOD17A2 Forest ecosystem Grow primary production Assessment

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700