用户名: 密码: 验证码:
Signification of Hypermethylated in Cancer 1 (HIC1) as Tumor Suppressor Gene in Tumor Progression
详细信息    查看全文
  • 作者:Jianghua Zheng (1)
    Dan Xiong (1)
    Xueqing Sun (1)
    Jinglong Wang (1)
    Mingang Hao (1)
    Tao Ding (2)
    Gang Xiao (1)
    Xiumin Wang (1)
    Yan Mao (3)
    Yuejie Fu (4)
    Kunwei Shen (3)
    Jianhua Wang (1)
  • 关键词:HIC1 ; Epigenetic modification ; Tumor microenviroment ; Tumor progression
  • 刊名:Cancer Microenvironment
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:5
  • 期:3
  • 页码:285-293
  • 全文大小:336KB
  • 参考文献:1. Wales MM et al (1995) p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med 1(6):570鈥?77 CrossRef
    2. Fleuriel C et al (2009) HIC1 (hypermethylated in cancer 1) epigenetic silencing in tumors. Int J Biochem Cell Biol 41(1):26鈥?3 CrossRef
    3. Jenal M, et al. (2010) Inactivation of the hypermethylated in cancer 1 tumour suppressor鈥攏ot just a question of promoter hypermethylation? Swiss Med Wkly 140(w13106)
    4. Chen WY et al (2003) Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nat Genet 33(2):197鈥?02 CrossRef
    5. Chen W et al (2004) Epigenetic and genetic loss of Hic1 function accentuates the role of p53 in tumorigenesis. Canc Cell 6(4):387鈥?98 CrossRef
    6. Briggs KJ et al (2008) Cooperation between the Hic1 and Ptch1 tumor suppressors in medulloblastoma. Genes Dev 22(6):770鈥?85 CrossRef
    7. Dehennaut V, Leprince D (2009) Implication of HIC1 (hypermethylated in cancer 1) in the DNA damage response. Bull Canc 96(11):E66鈥揈72
    8. Boulay G, et al. (2011) Loss of hypermethylated in cancer 1 (HIC1) in breast cancer cells contributes to stress induced migration and invasion through beta-2 adrenergic receptor (ADRB2) misregulation. J Biol Chem
    9. Foveau B, et al. (2012) Receptor tyrosyne kinase Epha2 is a direct target-gene of Hic1 (hypermethylated in cancer 1). J Biol Chem
    10. Carter MG et al (2000) Mice deficient in the candidate tumor suppressor gene Hic1 exhibit developmental defects of structures affected in the Miller-Dieker syndrome. Hum Mol Genet 9(3):413鈥?19 CrossRef
    11. Guerardel C et al (2001) Identification in the human candidate tumor suppressor gene HIC-1 of a new major alternative TATA-less promoter positively regulated by p53. J Biol Chem 276(5):3078鈥?089 CrossRef
    12. Pinte S et al (2004) Identification of a second G-C-rich promoter conserved in the human, murine and rat tumor suppressor genes HIC1. Oncogene 23(22):4023鈥?031 CrossRef
    13. Britschgi C et al (2006) Identification of the p53 family-responsive element in the promoter region of the tumor suppressor gene hypermethylated in cancer 1. Oncogene 25(14):2030鈥?039 CrossRef
    14. Mondal AM et al (2006) Identification and functional characterization of a novel unspliced transcript variant of HIC-1 in human cancer cells exposed to adverse growth conditions. Cancer Res 66(21):10466鈥?0477 CrossRef
    15. Albagli O et al (1995) The BTB/POZ domain: a new protein-protein interaction motif common to DNA- and actin-binding proteins. Cell Growth Differ 6(9):1193鈥?198
    16. Stogios PJ et al (2005) Sequence and structural analysis of BTB domain proteins. Genome Biol 6(10):R82 CrossRef
    17. Kelly KF, Daniel JM (2006) POZ for effect鈥揚OZ-ZF transcription factors in cancer and development. Trends Cell Biol 16(11):578鈥?87 CrossRef
    18. Pinte S et al (2004) The tumor suppressor gene HIC1 (hypermethylated in cancer 1) is a sequence-specific transcriptional repressor: definition of its consensus binding sequence and analysis of its DNA binding and repressive properties. J Biol Chem 279(37):38313鈥?8324 CrossRef
    19. Ahmad KF et al (2003) Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol Cell 12(6):1551鈥?564 CrossRef
    20. Ghetu AF et al (2008) Structure of a BCOR corepressor peptide in complex with the BCL6 BTB domain dimer. Mol Cell 29(3):384鈥?91 CrossRef
    21. Deltour S, Guerardel C, Leprince D (1999) Recruitment of SMRT/N-CoR-mSin3A-HDAC-repressing complexes is not a general mechanism for BTB/POZ transcriptional repressors: the case of HIC-1 and gammaFBP-B. Proc Natl Acad Sci U S A 96(26):14831鈥?4836 CrossRef
    22. Chen WY et al (2005) Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123(3):437鈥?48 CrossRef
    23. Deltour S et al (1998) The carboxy-terminal end of the candidate tumor suppressor gene HIC-1 is phylogenetically conserved. Biochim Biophys Acta 1443(1鈥?):230鈥?32
    24. Stankovic-Valentin N et al (2007) An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity. Mol Cell Biol 27(7):2661鈥?675 CrossRef
    25. Bertrand S et al (2004) Identification and developmental expression of the zebrafish orthologue of the tumor suppressor gene HIC1. Biochim Biophys Acta 1678(1):57鈥?6 CrossRef
    26. Deltour S et al (2002) The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif. Mol Cell Biol 22(13):4890鈥?901 CrossRef
    27. Chinnadurai G (2007) Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol 39(9):1593鈥?607 CrossRef
    28. Shalizi A et al (2006) A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311(5763):1012鈥?017 CrossRef
    29. Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8(12):947鈥?56 CrossRef
    30. Kanwal R, Gupta S (2011) Epigenetic modifications in cancer. Clin Genet
    31. Morton RA Jr et al (1996) Hypermethylation of chromosome 17P locus D17S5 in human prostate tissue. J Urol 156(2 Pt 1):512鈥?16 CrossRef
    32. Eguchi K et al (1997) DNA hypermethylation at the D17S5 locus in non-small cell lung cancers: its association with smoking history. Cancer Res 57(21):4913鈥?915
    33. Hayashi M et al (2001) Reduced HIC-1 gene expression in non-small cell lung cancer and its clinical significance. Anticancer Res 21(1B):535鈥?40
    34. Fujii H et al (1998) Methylation of the HIC-1 candidate tumor suppressor gene in human breast cancer. Oncogene 16(16):2159鈥?164 CrossRef
    35. Kanai Y et al (1998) DNA hypermethylation at the D17S5 locus is associated with gastric carcinogenesis. Cancer Lett 122(1鈥?):135鈥?41 CrossRef
    36. Kanai Y et al (1999) DNA hypermethylation at the D17S5 locus and reduced HIC-1 mRNA expression are associated with hepatocarcinogenesis. Hepatology 29(3):703鈥?09 CrossRef
    37. Huang J et al (2000) High frequency allelic loss on chromosome 17p13.3-p11.1 in esophageal squamous cell carcinomas from a high incidence area in northern China. Carcinogenesis 21(11):2019鈥?026 CrossRef
    38. Eads CA et al (2001) Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res 61(8):3410鈥?418
    39. Koul S, et al. (2002) Characteristic promoter hypermethylation signatures in male germ cell tumors. Mol Cancer 1(8)
    40. Rood BR et al (2002) Hypermethylation of HIC-1 and 17p allelic loss in medulloblastoma. Cancer Res 62(13):3794鈥?797
    41. Rathi A et al (2003) Aberrant methylation of the HIC1 promoter is a frequent event in specific pediatric neoplasms. Clin Cancer Res 9(10 Pt 1):3674鈥?678
    42. Waha A et al (2003) Epigenetic silencing of the HIC-1 gene in human medulloblastomas. J Neuropathol Exp Neurol 62(11):1192鈥?201
    43. Waha A et al (2004) Analysis of HIC-1 methylation and transcription in human ependymomas. Int J Cancer 110(4):542鈥?49 CrossRef
    44. Nishida N et al (2008) Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma. Hepatology 47(3):908鈥?18 CrossRef
    45. Uhlmann K et al (2003) Distinct methylation profiles of glioma subtypes. Int J Cancer 106(1):52鈥?9 CrossRef
    46. Issa JP, Baylin SB, Herman JG (1997) DNA methylation changes in hematologic malignancies: biologic and clinical implications. Leukemia 11(Suppl 1):S7鈥揝11
    47. Issa JP et al (1997) HIC1 hypermethylation is a late event in hematopoietic neoplasms. Cancer Res 57(9):1678鈥?681
    48. Huffman DM et al (2007) SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 67(14):6612鈥?618 CrossRef
    49. Stocklein H et al (2008) Detailed mapping of chromosome 17p deletions reveals HIC1 as a novel tumor suppressor gene candidate telomeric to TP53 in diffuse large B-cell lymphoma. Oncogene 27(18):2613鈥?625 CrossRef
    50. Tseng RC et al (2009) Distinct HIC1-SIRT1-p53 loop deregulation in lung squamous carcinoma and adenocarcinoma patients. Neoplasia 11(8):763鈥?70
    51. Briones VR et al (2006) Mechanism of fibroblast growth factor-binding protein 1 repression by TGF-beta. Biochem Biophys Res Commun 345(2):595鈥?01 CrossRef
    52. Zhang W et al (2010) A potential tumor suppressor role for Hic1 in breast cancer through transcriptional repression of ephrin-A1. Oncogene 29(17):2467鈥?476 CrossRef
    53. Foveau B et al (2012) The receptor tyrosine kinase EphA2 is a direct target gene of hypermethylated in cancer 1 (HIC1). J Biol Chem 287(8):5366鈥?378 CrossRef
    54. Zhang B et al (2009) Requirement for chromatin-remodeling complex in novel tumor suppressor HIC1-mediated transcriptional repression and growth control. Oncogene 28(5):651鈥?61 CrossRef
    55. Jenal M et al (2009) The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1. Mol Canc Res 7(6):916鈥?22 CrossRef
    56. Valenta T et al (2006) HIC1 attenuates Wnt signaling by recruitment of TCF-4 and beta-catenin to the nuclear bodies. EMBO J 25(11):2326鈥?337 CrossRef
    57. Van Rechem C et al (2010) Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells. Mol Cell Biol 30(16):4045鈥?059 CrossRef
    58. Pateras IS et al (2009) p57KIP2: Kipping the cell under control. Mol Canc Res 7(12):1902鈥?919 CrossRef
    59. Boulay G et al (2012) Loss of hypermethylated in cancer 1 (HIC1) in breast cancer cells contributes to stress-induced migration and invasion through beta-2 adrenergic receptor (ADRB2) misregulation. J Biol Chem 287(8):5379鈥?389 CrossRef
    60. Van Rechem C et al (2009) Scavenger chemokine (CXC motif) receptor 7 (CXCR7) is a direct target gene of HIC1 (hypermethylated in cancer 1). J Biol Chem 284(31):20927鈥?0935 CrossRef
    61. Di Marcotullio L et al (2004) REN(KCTD11) is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma. Proc Natl Acad Sci U S A 101(29):10833鈥?0838 CrossRef
    62. Goodrich LV et al (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277(5329):1109鈥?113 CrossRef
    63. Ferretti E et al (2005) Hedgehog checkpoints in medulloblastoma: the chromosome 17p deletion paradigm. Trends Mol Med 11(12):537鈥?45 CrossRef
    64. Wetmore C, Eberhart DE, Curran T (2001) Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res 61(2):513鈥?16
    65. Spivakov M, Fisher AG (2007) Epigenetic signatures of stem-cell identity. Nat Rev Genet 8(4):263鈥?71 CrossRef
    66. Lee TI et al (2006) Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125(2):301鈥?13 CrossRef
    67. Widschwendter M et al (2007) Epigenetic stem cell signature in cancer. Nat Genet 39(2):157鈥?58 CrossRef
    68. Ohm JE et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39(2):237鈥?42 CrossRef
    69. Kalari S, Pfeifer GP (2010) Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. Adv Genet 70(277鈥?08)
    70. Saito K et al (2008) Aberrant methylation status of known methylation-sensitive CpG islands in gastrointestinal stromal tumors without any correlation to the state of c-kit and PDGFRA gene mutations and their malignancy. Canc Sci 99(2):253鈥?59 CrossRef
    71. Dumont N et al (2008) Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. Proc Natl Acad Sci U S A 105(39):14867鈥?4872 CrossRef
    72. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9(4):265鈥?73 CrossRef
    73. Finak G et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518鈥?27 CrossRef
    74. Qiu W et al (2008) No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet 40(5):650鈥?55 CrossRef
    75. Hellebrekers DM et al (2007) Identification of epigenetically silenced genes in tumor endothelial cells. Cancer Res 67(9):4138鈥?148 CrossRef
    76. Jing Y, et al. (2011) Epithelial-mesenchymal transition in tumor microenvironment. Cell Biosci 1(29)
    77. Xia D et al (2012) Prostaglandin E(2) promotes intestinal tumor growth via DNA methylation. Nat Med 18(2):224鈥?26 CrossRef
    78. Ng EK et al (2009) MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer 101(4):699鈥?06 CrossRef
    79. Claes B, Buysschaert I, Lambrechts D (2010) Pharmaco-epigenomics: discovering therapeutic approaches and biomarkers for cancer therapy. Heredity (Edinb) 105(1):152鈥?60 CrossRef
    80. Lyko F, Brown R (2005) DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Canc Inst 97(20):1498鈥?506 CrossRef
    81. Zhou P, Lu Y, Sun XH (2012) Effects of a novel DNA methyltransferase inhibitor zebularine on human lens epithelial cells. Mol Vis 18(22鈥?8)
    82. Christman JK (2002) 5-azacytidine and 5-aza-2鈥?deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21(35):5483鈥?495 CrossRef
  • 作者单位:Jianghua Zheng (1)
    Dan Xiong (1)
    Xueqing Sun (1)
    Jinglong Wang (1)
    Mingang Hao (1)
    Tao Ding (2)
    Gang Xiao (1)
    Xiumin Wang (1)
    Yan Mao (3)
    Yuejie Fu (4)
    Kunwei Shen (3)
    Jianhua Wang (1)

    1. Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
    2. Department of Urological Surgery, Shanghai the Tenth People鈥檚 Hospital of Tong Ji University, Shanghai, 200072, China
    3. Shanghai Ruijin Hospital, Comprehensive Breast Health Center, Shanghai, 200025, China
    4. Department of Thoracic Surgery, RenJi Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
  • ISSN:1875-2284
文摘
Hypermethylated in cancer 1(HIC1) was identified as a strong suppressor gene in chromosome region 17p13.3 telomeric to TP53. This gene encodes a transcriptional repressor and is ubiquitously expressed in normal tissues but downexpressed in different tumor tissues where it is hypermethylated. The hypermethylation of this chromosomal region leads to epigenetic inactivation of HIC1, which would prompt cancer cells to alter survival and signaling pathways or specific transcription factors during the period of tumorigenesis. In vitro, HIC1 function is mainly a sequence-specific transcriptional repressor interacting with a still growing range of histone deacetylase(HDAC)-dependent and HDAC-independent corepressor complexes. Furthermore, a role for HIC1 in tumor development is firmly supported by Hic1 deficient mouse model and two double heterozygote models cooperate with p53 and Ptch1. Notably, our findings suggest that potential factors derived from tumor microenviroment may play a role in modulating HIC1 expression in tumor cells by epigenetic modification, which is responsible for tumor progression. In this review, we will describe genomic and proteinic structure of HIC1, and summary the potential role of HIC1 in human various solid tumors and leukemia, and explore the influence of tumor microenviroment on inducing HIC1 expression in tumor cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700