用户名: 密码: 验证码:
C–H allylation of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with iodide catalysis
详细信息    查看全文
  • 作者:Zhujia Feng ; Tingting Zeng ; Jun Xuan ; Yunhang Liu ; Liangqiu Lu…
  • 关键词:visible light photocatalysis ; iodide catalysis ; allylation ; tetrahydroisoquinolines
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:59
  • 期:2
  • 页码:171-174
  • 全文大小:689 KB
  • 参考文献:1.For selected reviews and books on transition metal catalysis and C–H activation, see: a) HickmanAJ, Sanford MS. Nature, 2012, 484: 177–185
    b).Yeung CS, Dong VM. Chem Rev, 2011, 111: 1215–1292CrossRef
    c).Ackermann L. Chem Rev, 2011, 111: 1315–1345CrossRef
    d).Davies HM, Du Bois J, Yu JQ. Chem Soc Rev, 2011, 40: 1855–1856CrossRef
    e).Yu JQ, Shi ZJ. Topics in Current Chemistry. Heidelberg: Springer, 2010
    f).Dyker G. Handbook of C–H Transformations. Weinheim: Wiley-VCH, 2005CrossRef
    g).Beller M, Bolm C. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals. Vol. 1 and 2. 2nd Ed, Weinheim: Wiley-VCH, 2004
    2.For selected reviews and books, see: a) Zhuo CX, Zheng C, You SL. Acc Chem Res, 2014, 47: 2258–1856
    b).Bandini M. Angew Chem Int Ed, 2011, 50: 994–995CrossRef
    c).Trost BM, Lee C. Catalytic Asymmetric Synthesis. 2nd Ed. New York: Wiley-VCH, 2010. 593–649
    d).Lu Z, Ma S. Angew Chem Int Ed, 2008, 47: 258–297CrossRef
    e).Tsuji J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century. Chichester: Wiley, 2004: 431–518
    f).Dai LX, Tu T, You SL, Deng WP, Hou XL. Acc Chem Res, 2003, 36: 659–667CrossRef
    3.For selected papers on reduction of π-allylpalladium complexes to allylic radicals, see: a) Millán A, Martín-Lasanta A, Miguel D, Cienfuegos LA, Cuerva JM. Chem Commun, 2011, 47: 10470–10472
    b).Millán A, Campana AG, Bazdi B, Miguel D, Cienfuegos LA, Echavarren AM, Cuerva JM. Chem Eur J, 2011, 17: 3985–3994CrossRef
    c).Campana AG, Bazdi B, Fuentes N, Robles R, Cuerva JM. Angew Chem Int Ed, 2008, 47: 7515–7519CrossRef
    d).Sasaoka SI, Yamamoto T, Kinoshita H, Inomata K, Kotake H. Chem Lett, 1985, 315–318
    4.For selected reviews, see: a) Narayanam JM, Stephenson CR. Chem Soc Rev, 2011, 40: 102–113
    b).Teplý F. Collect Czech Chem Commun, 2011, 76: 859–917CrossRef
    c).Shi L, Xia W. Chem Soc Rev, 2012, 41: 7687–7697CrossRef
    d).Xuan J, Xiao WJ. Angew Chem Int Ed, 2012, 51: 6828-6838
    e).Prier CK, Rankic DA, MacMillan DW. Chem Rev, 2013, 113: 5322–5363CrossRef
    f).Ravelli D, Fagnoni M, Albini A. Chem Soc Rev, 2013, 42: 97–113CrossRef
    g).Xi Y, Yi H, Lei A. Org Biomol Chem, 2013, 11: 2387–2403CrossRef
    h).Schultz DM, Yoon TP. Science, 2014, 343: 1239176CrossRef
    5.For reviews and books on dual catalysis merging visible light photocatalysis with other catalytic manners, see: a) Hopkinson MN, SahooB, Li J, Glorius F. Chem Eur J, 2014, 20: 3874–3886
    b).Zeitler K, Neumann M. Synergistic visible light photoredox catalysis. In: König B, Ed. Chemical Photocatalysis. Germany: Walter de Gruyter, 2013. 151–168.
    5.For recent examples with palladium catalysis, see: c) Xuan J, Zeng TT, Feng ZJ, Deng QH, Chen JR, Lu LQ, Xiao WJ. Angew Chem Int Ed, 2015, 54: 1625–1628
    d).Lang SB, O’Nele K, Tunge JA. J Am Chem Soc, 2014, 136: 13606–13609.CrossRef
    5.With gold catalysis, see: e) Hopkinson MN, Sahoo B, Glorius F. Adv Synth Catal, 2014, 356: 2794–2800
    f).Shu XZ, Zhang M, He Y, Frei H, Toste FD. J Am Chem Soc, 2014, 136: 5844–5847.CrossRef
    5.With nickel catalysis, see: g) Xuan J, Zeng TT, Chen JR, Lu LQ, Xiao WJ. Chem Eur J, 2015, 21: 4962–4965.
    5.With others, see: h) Feng ZJ, Xuan J, Xia XD, Ding W, Guo W, Chen JR, Zou YQ, Lu LQ, Xiao WJ. Org Biomol Chem, 2014, 12: 2037–2040
    i).Bergonzini G, Schindler CS, Wallentin CJ, Jacobsen EN, Stephenson CRJ. Chem Sci, 2014, 5: 112–116CrossRef
    6 a).Zou YQ, Lu LQ, Fu L, Chang NJ, Rong J, Chen JR, Xiao WJ. Angew Chem Int Ed, 2011, 50: 7171–7175CrossRef
    b).Xuan J, Cheng Y, An J, Lu LQ, Zhang XX, Xiao WJ. Chem Commun, 2011, 47: 8337–8339CrossRef
    c).Zou YQ, Chen JR, Liu XP, Lu LQ, Davis RL, Jørgensen KA, Xiao WJ. Angew Chem Int Ed, 2012, 51: 784–788CrossRef
    d).Xuan J, Feng ZJ, Duan SW, Xiao WJ. RSC Adv, 2012, 2: 4065–4068CrossRef
    e).Xuan J, Xia XD, Zeng TT, Feng ZJ, Chen JR, Lu LQ, Xiao WJ. Angew Chem Int Ed, 2014, 53: 5653–5656, and Refs. [3c,3g,3k]CrossRef
    7.Nguyen JD, D’Amato EM, Narayanam JM, Stephenson CR. Nat Chem, 2012, 4: 854–859CrossRef
    8.For selected reviews, see: a) Wei Y, Shi M. Acc Chem Res, 2010, 43: 1005–1018
    b).Dai LX, Hou XL. Chiral Ferrocenes in Asymmetric Catalysis: Synthesis and Applications. Weinheim: Wiley-VCH, 2010
    c).List B. Asymmetric Organocatalysis. Heidlberg: Springer, 2010
    d).Denmark SE, Beutner GL. Angew Chem Int Ed, 2008, 47: 1560–1638CrossRef
    f).Fu GC. Acc Chem Res, 2006, 39: 853–860CrossRef
    9 a).Carnes ME, Collins MS, Lindquist NR, Percástegui EG, Pluth MD, Johnson DW. Chem Commun, 2014, 50: 73–75CrossRef
    b).Patel K, Miljanić OS, Stoddart JF. Chem Commun, 2008, 44: 1853–1855CrossRef
    c).de Sousa AL, Resck IS. J Braz Chem Soc, 2002, 13: 233–237CrossRef
    d).Tipson RS, Clapp MA, Cretcher LH. J Org Chem, 1947, 12: 133–138CrossRef
    10.For detailed condition optimization, including the evaluation of photocatalysts, solvents, light sources and bases, see Supporting Information
    11.General Procedure: In a 10 mL dry flask equipped with magnetic bar was charged with 1 (0.5 mmol, 1.0 equiv.) and Ir(bpy)2(dtbbpy)PF6 (2 mol%), 5 (0.75 mmol, 1.5 equiv.), KI (20 mol%), NaCO2CF3 (1.0 mmol, 2.0 equiv.) and MeCN (5 mL). The mixture was degassed via freeze-pump-thaw method (3 times) and then stirred under the irradiation of 7 W blue LEDs at room temperature for 12 h. The resultant mixture was filtered under vacuum to remove the solid. The filtrate was purified by flash chromatography on silica gel (petroleum ether/DCM=10:1) to afford the desired product 3. Analytical data of 1-allyl-2-phenyl-1,2,3,4-tetrahydroisoquinoline (3a): light yellow oil; 1H NMR (600 MHz, CDCl3) δ (ppm) 7.18 (m, 6H), 6.89 (d, J=8.2 Hz, 2H), 6.73 (t, J=7.1 Hz, 1H), 5.89–5.82 (m, 1H), 5.06 (t, J=13.1 Hz, 2H), 4.74 (t, J=6.7 Hz, 1H), 3.72–3.52 (m, 2H), 3.08–2.96 (m, 1H), 2.88 (dt, J=15.7, 5.2 Hz, 1H), 2.78–2.65 (m, 1H), 2.49 (dt, J=14.1, 7.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ (ppm) 149.4, 138.1, 135.6, 134.9, 129.2, 128.5, 127.3, 126.5, 125.7, 117.2, 117.0, 113.8, 59.3, 41.9, 40.9, 27.4; HRMS: m/z (ESI) calculated [M+H]+ 250.1590, measured 250.1594.
  • 作者单位:Zhujia Feng (1)
    Tingting Zeng (1)
    Jun Xuan (1)
    Yunhang Liu (1)
    Liangqiu Lu (1)
    Wen-Jing Xiao (1)

    1. CCNU-uOttawa Joint Research Center, College of Chemistry, Central China Normal University, Wuhan, 430079, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
A dual catalytic system, combing visible light photoredox catalysis and iodide catalysis, has been developed for the functionalization of inert C–H bonds. By doing so, radical allylation reactions of N-aryl-tetrahydroisoquinolines (THIQs) were realized under extremely mild conditions, affording a wide variety of allyl-substituted THIQs in up to 78% yields. Keywords visible light photocatalysis iodide catalysis allylation tetrahydroisoquinolines

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700