用户名: 密码: 验证码:
Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans
详细信息    查看全文
  • 作者:Huaqun Yin (74) (75)
    Xian Zhang (74) (75)
    Xiaoqi Li (74) (75)
    Zhili He (76)
    Yili Liang (74) (75)
    Xue Guo (74) (75)
    Qi Hu (74) (75)
    Yunhua Xiao (74) (75)
    Jing Cong (74) (75)
    Liyuan Ma (74) (75)
    Jiaojiao Niu (74) (75)
    Xueduan Liu (74) (75)

    74. School of Minerals Processing and Bioengineering
    ; Central South University ; Changsha ; China
    75. Key Laboratory of Biometallurgy of Ministry of Education
    ; Central South University ; Changsha ; China
    76. Institute for Environmental Genomics
    ; University of Oklahoma ; Norman ; OK ; USA
  • 关键词:Acidithiobacillus thiooxidans ; Whole genome sequence ; Bioinformatics analysis ; Real ; time quantitative PCR ; Sulfur oxidation model
  • 刊名:BMC Microbiology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:1,802 KB
  • 参考文献:1. Hallberg, KB, Gonz谩lez-Toril, E, Johnson, DB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14: pp. 9-19 CrossRef
    2. Quatrini, R, Appia-Ayme, C, Denis, Y, Jedlicki, E, Holmes, DS, Bonnefoy, V (2009) Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics 10: pp. 394 CrossRef
    3. Rohwerder, T, Gehrke, T, Kinzler, K, Sand, W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63: pp. 239-248 CrossRef
    4. Holmes, DS, Bonnefoy, V Genetic And Bioinformatic Insights Into Iron And Sulfur Oxidation Mechanisms Of Bioleaching Organisms. In: Rawlings, DE, Johnson, DB eds. (2007) Biomining. Springer, Berlin, pp. 281-307 CrossRef
    5. Pronk, JT, Meulenberg, R, Hazeu, W, Bos, P, Kuenen, JG (1990) Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. FEMS Microbiol Lett 75: pp. 293-306 CrossRef
    6. Valdes, J, Pedroso, I, Quatrini, R, Dodson, RJ, Tettelin, H, Blake, R, Eisen, JA, Holmes, DS (2008) Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9: pp. 597 CrossRef
    7. Steudel, R The Chemical Sulfur Cycle. In: Lens, PNL, Pol, LH eds. (2000) Environmental Technologies to Treat Sulfur Pollution. London, IWA Publishing, pp. 1-31
    8. Rohwerder, T, Sand, W (2003) The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149: pp. 1699-1710 CrossRef
    9. Chen, L, Ren, Y, Lin, J, Liu, X, Pang, X, Lin, J (2012) Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant. PLoS One 7: pp. e39470 CrossRef
    10. Bobadilla Fazzini, RA, Cort茅s, MP, Padilla, L, Maturana, D, Budinich, M, Maass, A, Parada, P (2013) Stoichiometric modeling of oxidation of reduced inorganic sulfur compounds (Riscs) in Acidithiobacillus thiooxidans. Biotechnol Bioeng 110: pp. 2242-2251 CrossRef
    11. Mangold, S, Valdes, J, Holmes, DS, Dopson, M (2011) Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus. Front Microbiol 2: pp. 17 CrossRef
    12. Sch眉tz, M, Maldener, I, Griesbeck, C, Hauska, G (1999) Sulfide-quinone reductase from Rhodobacter capsulatus: requirement for growth, periplasmic localization, and extension of gene sequence analysis. J Bacteriol 181: pp. 6516-6523
    13. Friedrich, CG Physiology And Genetics Of Bacterial Sulfur Oxidation. In: Poole, RK eds. (1997) Advances in Microbial Physiology. Elsevier, Amsterdam, pp. 235-289
    14. Friedrich, CG, Rother, D, Bardischewsky, F, Quentmeier, A, Fischer, J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?. Appl Environ Microbiol 67: pp. 2873-2882 CrossRef
    15. Friedrich, CG, Quentmeier, A, Bardischewsky, F, Rother, D, Kraft, R, Kostka, S, Prinz, H (2000) Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 182: pp. 4677-4687 CrossRef
    16. Rother, D, Henrich, H, Quentmeier, A, Bardischewsky, F, Friedrich, CG (2001) Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol 183: pp. 4499-4508 CrossRef
    17. Ghosh, W, Dam, B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 33: pp. 999-1043 CrossRef
    18. de Jong, GAH, Hazeu, W, Bos, P, Kuenen, JG (1997) Polythionate degradation by tetrathionate hydrolase of Thiobacillus ferrooxidans. Microbiology 143: pp. 499-504 CrossRef
    19. Rzhepishevska, OI, Valdes, J, Marcinkeviciene, L, Gallardo, CA, Meskys, R, Bonnefoy, V, Holmes, DS, Dopson, M (2007) Regulation of a novel Acidithiobacillus caldus gene cluster involved in metabolism of reduced inorganic sulfur compounds. Appl Environ Microbiol 73: pp. 7367-7372 CrossRef
    20. Gardner, MN, Rawlings, DE (2000) Production of rhodanese by bacteria present in bio-oxidation plants used to recover gold from arsenopyrite concentrates. J Appl Microbiol 89: pp. 185-190 CrossRef
    21. Yoch, DC, Lindstrom, ES (1971) Survey of the photosynthetic bacteria for rhodanese (thiosulfate: cyanide sulfur transferase) activity. J Bacteriol 106: pp. 700-701
    22. Vald茅s, J, Pedroso, I, Quatrini, R, Holmes, DS (2008) Comparative genome analysis of Acidithiobacillus ferrooxidans. A. thiooxidans and A. caldus : Insights into their metabolism and ecophysiology. Hydrometallurgy 94: pp. 180-184 CrossRef
    23. Quatrini, R, Vald猫s, J, Jedlicki, E, Holmes, DS The Use Of Bioinformatics And Genome Biology To Advance Our Understanding Of Bioleaching Microorganisms. In: Quatrini, R, Vald猫s, J, Jedlicki, E, Holmes, DS eds. (2007) Microbial Processing of Metal Sulfides. Springer, Berlin, pp. 221-239 CrossRef
    24. Huang, X, Zhao, M, Liu, W, Guan, Y, Shi, Y, Wang, Q, Wu, S, He, M (2013) Gigabase-scale transcriptome analysis on four species of pearl oysters. Mar Biotechnol 15: pp. 253-264 CrossRef
    25. Delcher, AL, Harmon, D, Kasif, S, White, O, Salzberg, SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27: pp. 4636-4641 CrossRef
    26. Bedell, JA, Korf, I, Gish, W (2000) MaskerAid: a performance enhancement to RepeatMasker. Bioinformatics 16: pp. 1040-1041 CrossRef
    27. Lagesen, K, Hallin, P, R酶dland, EA, St忙rfeldt, H, Rognes, T, Ussery, DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35: pp. 3100-3108 CrossRef
    28. Lowe, TM, Eddy, SR (2003) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: pp. 955-964 CrossRef
    29. Silverman, MP, Lundgren, DG (1959) Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: An improved medium and a harvesting procedure for securing high cell yields. J Bacteriol 77: pp. 642-647
    30. Ram铆rez, P, Guiliani, N, Valenzuela, L, Beard, S, Jerez, CA (2004) Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 70: pp. 4491-4498 CrossRef
    31. Simms, D, Cizdziel, P, Chomczynski, P (1993) TRIzolTM: A new reagent for optimal single-step isolation of RNA. Focus 15: pp. 99-102
    32. Livak, KJ, Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2鈭捨斘擟T method. Methods 25: pp. 402-408 CrossRef
    33. Suzuki, I (1999) Oxidation of inorganic sulfur compounds: chemical and enzymatic reactions. Can J Microbiol 45: pp. 97-105 CrossRef
    34. Zhang, L, Liu, X, Liu, J, Zhang, Z (2013) Characteristics and function of sulfur dioxygenase in echiuran worm Urechis unicinctus. PLoS One 8: pp. e81885 CrossRef
    35. Bugaytsova, Z, Lindstr枚m, EB (2004) Localization, purification and properties of a tetrathionate hydrolase from Acidithiobacillus caldus. Eur J Biochem 271: pp. 272-280 CrossRef
    36. Wodara, C, Kostka, S, Egert, M, Kelly, DP, Friedrich, CG (1994) Identification and sequence analysis of the soxB gene essential for sulfur oxidation of Paracoccus denitrificans GB17. J Bacteriol 176: pp. 6188-6191
    37. Beller, HR, Chain, PSG, Letain, TE, Chakicherla, A, Larimer, FW, Richardson, PM, Coleman, MA, Wood, AP, Kelly, DP (2006) The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188: pp. 1473-1488 CrossRef
    38. Kletzin, A (1992) Molecular characterization of the sor gene, which encodes the sulfur oxygenase/reductase of the thermoacidophilic Archaeum Desulfurolobus ambivalens. J Bacteriol 174: pp. 5854-5859
    39. He, Z, Li, Y, Zhou, P, Liu, S (2000) Cloning and heterologous expression of a sulfur oxygenase/reductase gene from the thermoacidophilic archaeon Acidianus sp. S5 in Escherichia coli. FEMS Microbiol Lett 193: pp. 217-221 CrossRef
    40. Pelletier, N, Leroy, G, Guiral, M, Giudici-Orticoni, M, Aubert, C (2008) First characterisation of the active oligomer form of sulfur oxygenase reductase from the bacterium Aquifex aeolicus. Extremophiles 12: pp. 205-215 CrossRef
    41. Chen, ZW, Liu, YY, Wu, JF, She, Q, Jiang, CY, Liu, SJ (2007) Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates. Appl Microbiol Biotechnol 74: pp. 688-698 CrossRef
    42. Kletzin, A (1989) Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens. J Bacteriol 171: pp. 1638-1643
    43. Kletzin, A, Urich, T, M眉ller, F, Bandeiras, TM, Gomes, CM (2004) Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 36: pp. 77-91 CrossRef
    44. Emmel, T, Sand, W, K枚nig, WA, Bock, E (1986) Evidence for the existence of a sulphur oxygenase in Sulfolobus brierleyi. Microbiology 132: pp. 3415-3420 CrossRef
    45. Li, M, Chen, Z, Zhang, P, Pan, X, Jiang, C, An, X, Liu, S, Chang, W (2008) Crystal structure studies on sulfur oxygenase reductase from Acidianus tengchongensis. Biochem Biophys Res Commun 369: pp. 919-923 CrossRef
    46. Urich, T, Bandeiras, TM, LEAL, SS, Rachel, R, Albrecht, T, Zimmermann, P, Scholz, C, Teixeira, M, Gomes, CM, Kletzin, A (2004) The sulphur oxygenase reductase from Acidianus ambivalens is a multimeric protein containing a low-potential mononuclear non-haem iron centre. Biochem J 381: pp. 137-146 CrossRef
    47. Urich, T, Kroke, A, Bauer, C, Seyfarth, K, Reuff, M, Kletzin, A (2005) Identification of core active site residues of the sulfur oxygenase reductase from Acidianus ambivalens by site-directed mutagenesis. FEMS Microbiol Lett 248: pp. 171-176 CrossRef
    48. Valdes, J, Quatrini, R, Hallberg, K, Dopson, M, Valenzuela, PDT, Holmes, DS (2009) Draft genome sequence of the extremely acidophilic bacterium Acidithiobacillus caldus ATCC 51756 reveals metabolic versatility in the genus Acidithiobacillus. J Bacteriol 191: pp. 5877-5878 CrossRef
    49. Valdes, J, Ossandon, F, Quatrini, R, Dopson, M, Holmes, DS (2011) Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus. J Bacteriol 193: pp. 7003-7004 CrossRef
    50. Chen, Z, Jiang, C, She, Q, Liu, S, Zhou, P (2005) Key role of cysteine residues in catalysis and subcellular localization of sulfur oxygenase-reductase of Acidianus tengchongensis. Appl Environ Microbiol 71: pp. 621-628 CrossRef
    51. Urich, T, Gomes, CM, Kletzin, A, Fraz茫o, C (2006) X-ray structure of a self-compartmentalizing sulfur cycle metalloenzyme. Science 311: pp. 992-996 CrossRef
    52. Urich, T, Coelho, R, Kletzina, A, Frazao, C (2005) The sulfur oxygenase reductase from Acidianus ambivalens is an icosatetramer as shown by crystallization and Patterson analysis. BBA-Proteins Proteomics 1747: pp. 267-270 CrossRef
    53. Schilling, CH, Palsson, BO (2000) Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J Theor Biol 203: pp. 249-283 CrossRef
    54. M眉ller, FH, Bandeiras, TM, Urich, T, Teixeira, M, Gomes, CM, Kletzin, A (2004) Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase. Mol Microbiol 53: pp. 1147-1160 CrossRef
    55. Tano, T, Kitaguchi, H, Harada, M, Nagasawa, T, Sugio, T (1996) Purification and some properties of a tetrathionate decomposing enzyme from Thiobacillus thiooxidans. Biosci Biotechnol Biochem 60: pp. 224-227 CrossRef
    56. Meyer, B, Imhoff, JF, Kuever, J (2007) Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria 鈥?evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9: pp. 2957-2977 CrossRef
    57. Ghosh, W, Mallick, S, DasGupta, SK (2009) Origin of the Sox multienzyme complex system in ancient thermophilic bacteria and coevolution of its constituent proteins. Res Microbiol 160: pp. 409-420 CrossRef
    58. Brasseur, G, Levican, G, Bonnefoy, V, Holmes, D, Jedlicki, E, Lemesle-Meunier, D (2004) Apparent redundancy of electron transfer pathways via bc 1 complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans. Biochim Biophys Acta-Bioenerg 1656: pp. 114-126 CrossRef
  • 刊物主题:Microbiology; Biological Microscopy; Fungus Genetics; Parasitology; Virology; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2180
文摘
Background Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation. Results The genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase. Conclusion Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence analyses, providing insights into our understanding of its physiology and further analysis of potential functions of key sulfur oxidation genes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700