用户名: 密码: 验证码:
Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap
详细信息    查看全文
  • 作者:Xian Zhang ; Jiaojiao Niu ; Yili Liang ; Xueduan Liu ; Huaqun Yin
  • 关键词:Metagenomics ; Taxonomic analysis ; Functional analysis
  • 刊名:BMC Genetics
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:17
  • 期:1
  • 全文大小:1,741 KB
  • 参考文献:1.Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright TL. The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe (II)-oxidizing bacteria. Hydrometallurgy. 2010;104(3–4):342–50.CrossRef
    2.Chen LX, Li JT, Chen YT, Huang LN, Hua ZS, Hu M, et al. Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environ Microbiol. 2013;15(9):2431–44.PubMed CrossRef
    3.Bosecker K, Mengel-Jung G, Schippers A. Geomicrobiological risk assessment of abandoned mining sites. In: Tsezos M, Hatzikioseyian A, Remoundaki E, editors. Biohydrometallurgy: A Sustainable Technology in Evolution, Part 1. Athens: University of Athens; 2004. p. 585–93.
    4.Breuker A, Blazejak A, Bosecker K, Schippers A. Diversity of iron oxidizing bacteria from various sulfidic mine waste dumps. Adv Mater Res. 2009;71–73:47–50.CrossRef
    5.Kock D, Schippers A. Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage. Appl Environ Microbiol. 2008;74(16):5211–9.PubMed PubMedCentral CrossRef
    6.Kock D, Schippers A. Geomicrobiological investigation of two different mine waste tailings generating acid mine drainage. Hydrometallurgy. 2006;83(1–4):167–75.CrossRef
    7.Liljeqvist M, Ossandon FJ, González C, Rajan S, Stell A, Valdes J, et al. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiol Ecol. 2015;91(4):fiv011.PubMed CrossRef
    8.Huang LN, Zhou WH, Hallberg KB, Wan C, Li J, Shu WS. Spatial and temporal analysis of the microbial community in the tailings of a Pb-Zn mine generating acidic drainage. Appl Environ Microbiol. 2011;77(15):5540–4.PubMed PubMedCentral CrossRef
    9.Liu J, Hua Z, Chen L, Kuang J, Li S, Shu W, et al. Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings. Appl Environ Microbiol. 2014;80(12):3677–86.PubMed PubMedCentral CrossRef
    10.Demergasso CS, Galleguillos PAP, Escudero LVG, Zepeda VJA, Castillo D, Casamayor EO. Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy. 2005;80(4):241–53.CrossRef
    11.Bonnefoy V, Holmes DS. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol. 2012;14(7):1597–611.PubMed CrossRef
    12.Touati D. Iron and oxidative stress in bacteria. Arch Biochem Biophys. 2000;373(1):1–6.PubMed CrossRef
    13.López-Archilla AI, Marin I, Amils R. Microbial community composition and ecology of an acidic aquatic environment: the Tinto River, Spain. Microb Ecol. 2001;41(1):20–35.PubMed
    14.González-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R. Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol. 2003;69(8):4853–65.PubMed PubMedCentral CrossRef
    15.Sánchez-Andrea I, Rodríguez N, Amils R, Sanz JL. Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol. 2011;77(17):6085–93.PubMed PubMedCentral CrossRef
    16.Franke S, Rensing C. Acidophiles: mechanisms to tolerate metal and acid toxicity. In: Gerday C, Glansdorff N, editors. Physiology and biochemistry of extremophiles. Washington, DC: ASM press; 2007. p. 271–7.CrossRef
    17.Baker-Austin C, Dopson M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 2007;15(4):165–71.PubMed CrossRef
    18.Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature. 2004;428(6978):37–43.PubMed CrossRef
    19.Sabater S, Buchaca T, Cambra J, Catalan J, Guasch H, Ivorra N, et al. Structure and function of benthic algal communities in an extremely acid river. J Phycol. 2003;39(3):481–9.CrossRef
    20.Brierley CL. Bacterial succession in bioheap leaching. Hydrometallurgy. 2001;59(2–3):249–55.CrossRef
    21.Johnson SS, Chevrette MG, Ehlmann BL, Benison KC. Insights from the metagenome of an acid salt lake: the role of biology in an extreme depositional environment. PLoS One. 2015;10(4):e122869.
    22.Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev. 2004;68(4):669–85.PubMed PubMedCentral CrossRef
    23.Friedrich MW. Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Curr Opin Biotechnol. 2005;17(1):59–66.CrossRef
    24.Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet. 2004;38(1):525–52.PubMed CrossRef
    25.Streit WR, Schmitz RA. Metagenomics – the key to the uncultured microbes. Curr Opin Microbiol. 2004;7(5):492–8.PubMed CrossRef
    26.Hua ZS, Han YJ, Chen LX, Liu J, Hu M, Li SJ, et al. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. ISME J. 2015;9(6):1280–94.PubMed PubMedCentral CrossRef
    27.Schloss PD, Handelsman J. Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol. 2005;6(8):229.PubMed PubMedCentral CrossRef
    28.Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41(D1):D808–15.PubMed PubMedCentral CrossRef
    29.Baker BJ, Banfield JF. Microbial communities in acid mine drainage. FEMS Microbiol Ecol. 2003;44(2):139–52.PubMed CrossRef
    30.Johnson DB, Hallberg KB. The microbiology of acidic mine waters. Res Microbiol. 2003;154(7):466–73.PubMed CrossRef
    31.Hallberg KB. New perspectives in acid mine drainage microbiology. Hydrometallurgy. 2010;104(3–4):448–53.CrossRef
    32.Hallberg KB, González-Toril E, Johnson DB. Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles. 2010;14(1):9–19.PubMed CrossRef
    33.Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, et al. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics. 2008;9(1):597.PubMed PubMedCentral CrossRef
    34.Fancello L, Trape S, Robert C, Boyer M, Popgeorgiev N, Raoult D, et al. Viruses in the desert: a metagenomic survey of viral communities in four perennial ponds of the Mauritanian Sahara. ISME J. 2013;7(2):359–69.PubMed PubMedCentral CrossRef
    35.Adriaenssens EM, Van Zyl L, De Maayer P, Rubagotti E, Rybicki E, Tuffin M, et al. Metagenomic analysis of the viral community in Namib Desert hypoliths. Environ Microbiol. 2015;17(2):480–95.PubMed CrossRef
    36.Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, et al. Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci USA. 2002;99(22):14250–5.PubMed PubMedCentral CrossRef
    37.Yin H, Qiu G, Wu L, Xie M, Zhou J, Dai Z, et al. Microbial community diversity and changes associated with a mine drainage gradient at the Dexing copper mine, China. Aquat Microb Ecol. 2008;51(1):67–76.CrossRef
    38.Williams KP, Kelly DP. Proposal for a new class within the phylum Proteobacteria, Acidithiobacillia classis nov., with the type order Acidithiobacillales, and emended description of the class Gammaproteobacteria. Int J Syst Evol Microbiol. 2013;63(8):2901–6.PubMed CrossRef
    39.Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, et al. Autotrophic carbon fixation in archaea. Nat Rev Microbiol. 2010;8(6):447–60.PubMed CrossRef
    40.Levicán G, Ugalde JA, Ehrenfeld N, Maass A, Parada P. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations. BMC Genomics. 2008;9(1):581.PubMed PubMedCentral CrossRef
    41.Shively JM, van Keulen G, Meijer WG. Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Annu Rev Microbiol. 1998;52:191–230.PubMed CrossRef
    42.Guo X, Yin H, Cong J, Dai Z, Liang Y, Liu X. RubisCO gene clusters found in a metagenome microarray from acid mine drainage. Appl Environ Microbiol. 2013;79(6):2019–26.PubMed PubMedCentral CrossRef
    43.Bertin PN, Heinrich-Salmeron A, Pelletier E, Goulhen-Chollet F, Arsène-Ploetze F, Gallien S, et al. Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta-and proteo-genomics. ISME J. 2011;5(11):1735–47.PubMed PubMedCentral CrossRef
    44.Hügler M, Wirsen CO, Fuchs G, Taylor CD, Sievert SM. Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the ε subdivision of proteobacteria. J Bacteriol. 2005;187(9):3020–7.PubMed PubMedCentral CrossRef
    45.Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol. 2011;77(6):1925–36.PubMed PubMedCentral CrossRef
    46.Aoshima M, Ishii M, Igarashi Y. A novel enzyme, citryl-CoA synthetase, catalysing the first step of the citrate cleavage reaction in Hydrogenobacter thermophilus TK-6. Mol Microbiol. 2004;52(3):751–61.PubMed CrossRef
    47.Aoshima M, Ishii M, Igarashi Y. A novel enzyme, citryl-CoA lyase, catalysing the second step of the citrate cleavage reaction in Hydrogenobacter thermophilus TK-6. Mol Microbiol. 2004;52(3):763–70.PubMed CrossRef
    48.Hügler M, Huber H, Molyneaux SJ, Vetriani C, Sievert SM. Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. Environ Microbiol. 2007;9(1):81–92.PubMed CrossRef
    49.Chen LX, Hu M, Huang LN, Hua ZS, Kuang JL, Li SJ, Shu WS. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J. 2015;9(7):1579–1592.PubMed PubMedCentral CrossRef
    50.He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, et al. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett. 2010;13(5):564–75.PubMed CrossRef
    51.Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J, Kimbrel J, et al. Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J. 2014;8(7):1464–75.PubMed PubMedCentral CrossRef
    52.Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M. Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol. 2015;6:475.PubMed PubMedCentral
    53.Jones CM, Stres B, Rosenquist M, Hallin S. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol Biol Evol. 2008;25(9):1955–66.PubMed CrossRef
    54.Weber KA, Achenbach LA, Coates JD. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol. 2006;4(10):752–64.PubMed CrossRef
    55.Emerson D, Fleming EJ, McBeth JM. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol. 2010;64:561–83.PubMed CrossRef
    56.Hedrich S, Schlömann M, Johnson DB. The iron-oxidizing proteobacteria. Microbiology. 2011;157(6):1551–64.PubMed CrossRef
    57.Cárdenas JP, Ortiz R, Norris PR, Watkin E, Holmes DS. Reclassification of ‘Thiobacillus prosperus’ Huber and Stetter 1989 as Acidihalobacter prosperus gen. nov., sp. nov., a member of the family Ectothiorhodospiraceae. Int J Syst Evol Microbiol. 2015;65(10):3641–4.CrossRef
    58.Bird LJ, Bonnefoy V, Newman DK. Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol. 2011;19(7):330–40.PubMed CrossRef
    59.Ilbert M, Bonnefoy V. Insight into the evolution of the iron oxidation pathways. Biochim Biophys Acta-Bioenerg. 2013;1827(2):161–75.CrossRef
    60.Castelle CJ, Roger M, Bauzan M, Brugna M, Lignon S, Nimtz M, et al. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron. Biochim Biophys Acta-Bioenerg. 2015;1847(8):717–28.CrossRef
    61.Yin H, Zhang X, Li X, He Z, Liang Y, Guo X, et al. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans. BMC Microbiol. 2014;14:179.PubMed PubMedCentral CrossRef
    62.Johnson DB, Hallberg KB. Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv Microb Physiol. 2009;54:201–55.CrossRef
    63.Dopson M, Johnson DB. Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environ Microbiol. 2012;14(10):2620–31.PubMed CrossRef
    64.Schippers A, Sand W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol. 1999;65(1):319–21.PubMed PubMedCentral
    65.Chen L, Ren Y, Lin J, Liu X, Pang X, Lin J. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant. PLoS One. 2012;7(9):e39470.PubMed PubMedCentral CrossRef
    66.Urich T, Bandeiras TM, Leal SS, Rachel R, Albrecht T, Zimmermann P, et al. The sulphur oxygenase reductase from Acidianus ambivalens is a multimeric protein containing a low-potential mononuclear non-haem iron centre. Biochem J. 2004;381(1):137–46.PubMed PubMedCentral CrossRef
    67.Li M, Chen Z, Zhang P, Pan X, Jiang C, An X, et al. Crystal structure studies on sulfur oxygenase reductase from Acidianus tengchongensis. Biochem Biophys Res Commun. 2008;369(3):919–23.PubMed CrossRef
    68.Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V. Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics. 2009;10(1):394.PubMed PubMedCentral CrossRef
    69.Silver S, Phung LT. Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol. 1996;50:753–89.PubMed CrossRef
    70.Silver S, Phung LT. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol. 2005;32(11–12):587–605.PubMed CrossRef
    71.Segura A, Molina L, Fillet S, Krell T, Bernal P, Muñoz-Rojas J, et al. Solvent tolerance in Gram-negative bacteria. Curr Opin Biotechnol. 2012;23(3):415–21.PubMed CrossRef
    72.Sardessai YN, Bhosle S. Organic solvent-tolerant bacteria in mangrove ecosystem. Curr Sci. 2002;82(6):622–3.
    73.Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol. 2007;74(5):961–73.PubMed CrossRef
    74.Sikkema J, de Bont JA, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev. 1995;59(2):201–22.PubMed PubMedCentral
    75.Torres S, Pandey A, Castro GR. Organic solvent adaptation of Gram positive bacteria: Applications and biotechnological potentials. Biotechnol Adv. 2011;29(4):442–52.PubMed CrossRef
    76.Zhou Z, Fang Y, Li Q, Yin H, Qin W, Liang Y, et al. Global transcriptional analysis of stress-response strategies in Acidithiobacillus ferrooxidans ATCC 23270 exposed to organic extractant-Lix984n. World J Microbiol Biotechnol. 2012;28(3):1045–55.PubMed CrossRef
    77.Liu J, Qiu G, Ge Y, Xu J. Extraction of copper from bacterial leach solution using Lix984. Trans Nonferrous Met Soc China. 2002;12(2):313–6.
    78.Barr SD, Gedamu L. Cloning and characterization of three differentially expressed peroxidoxin genes from Leishmania chagasi. Evidence for an enzymatic detoxification of hydroxyl radicals. J Biol Chem. 2001;276(36):34279–87.PubMed CrossRef
    79.Wheaton G, Counts J, Mukherjee A, Kruh J, Kelly R. The confluence of heavy metal biooxidation and heavy metal resistance: implications for bioleaching by extreme thermoacidophiles. Minerals. 2015;5(3):397–451.CrossRef
    80.Barahona S, Dorador C, Zhang R, Aguilar P, Sand W, Vera M, et al. Isolation and characterization of a novel Acidithiobacillus ferrivorans strain from the Chilean Altiplano: attachment and biofilm formation on pyrite at low temperature. Res Microbiol. 2014;165(9):782–93.PubMed CrossRef
    81.Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996;62(2):316–22.PubMed PubMedCentral
    82.Deng J, Gu Y, Zhang J, Xue K, Qin Y, Yuan M, et al. Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska. Mol Ecol. 2015;24(1):222–34.PubMed CrossRef
    83.Yin H, Niu J, Ren Y, Cong J, Zhang X, Fan F, et al. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Sci Rep. 2015;5:14266.PubMed PubMedCentral CrossRef
    84.Patel RK, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One. 2012;7(2):e30619.PubMed PubMedCentral CrossRef
    85.Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. BIOINFORMATICS. 2006;22(13):1658–9.PubMed CrossRef
    86.Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006;34(19):5623–30.PubMed PubMedCentral CrossRef
    87.Noguchi H, Taniguchi T, Itoh T. MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res. 2008;15(6):387–96.PubMed PubMedCentral CrossRef
    88. Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One. 2008;3(6):e2527.PubMed PubMedCentral CrossRef
    89. Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17(3):377–86.PubMed PubMedCentral CrossRef
    90. Huson DH, Mitra S, Ruscheweyh H, Weber N, Schuster SC. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 2011;21(9):1552–60.PubMed PubMedCentral CrossRef
  • 作者单位:Xian Zhang (1) (2)
    Jiaojiao Niu (1) (2)
    Yili Liang (1) (2)
    Xueduan Liu (1) (2)
    Huaqun Yin (1) (2)

    1. School of Minerals Processing and Bioengineering, Central South University, Changsha, China
    2. Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
  • 刊物主题:Life Sciences, general; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics; Genetics and Population Dynamics;
  • 出版者:BioMed Central
  • ISSN:1471-2156
文摘
Background Metagenomics allows us to acquire the potential resources from both cultivatable and uncultivable microorganisms in the environment. Here, shotgun metagenome sequencing was used to investigate microbial communities from the surface layer of low grade copper tailings that were industrially bioleached at the Dexing Copper Mine, China. A bioinformatics analysis was further performed to elucidate structural and functional properties of the microbial communities in a copper bioleaching heap.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700