用户名: 密码: 验证码:
Comparative study of nickel resistance of pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum
详细信息    查看全文
  • 作者:Ying Xu (1) (2)
    Huaqun Yin (1) (2)
    Huidan Jiang (1) (2)
    Yili Liang (1) (2)
    Xue Guo (1) (2)
    Liyuan Ma (1) (2)
    Yunhua Xiao (1) (2)
    Xueduan Liu (1) (2)
  • 关键词:Acidithiobacillus thiooxidans ; Leptospirillum ferriphilum ; Nickel ; Sulfur oxidation ; Ferrous ion oxidation ; RT ; PCR ; Functional gene analysis
  • 刊名:Archives of Microbiology
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:195
  • 期:9
  • 页码:637-646
  • 全文大小:1034KB
  • 参考文献:1. Akcil A, Ciftci H et al (2007) Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Miner Eng 20(3):310-18 CrossRef
    2. Akinci G, Guven DE (2011) Bioleaching of heavy metals contaminated sediment by pure and mixed cultures of / Acidithiobacillus spp. Desalination 268(1-):221-26 CrossRef
    3. Ballester A, González F et al (1992) The use of catalytic ions in bioleaching. Hydrometallurgy 29(1-):145-60 CrossRef
    4. Brenner K, You L et al (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26(9):483-89 CrossRef
    5. Cabrera G, Gómez JM et al (2005) Influence of heavy metals on growth and ferrous sulphate oxidation by / Acidithiobacillus ferrooxidans in pure and mixed cultures. Process Biochem 40(8):2683-687 CrossRef
    6. Coram NJ, Rawlings DE (2002) Molecular relationship between two groups of the genus / Leptospirillum and the finding that / Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40?°C. Appl Environ Microbiol 68(2):838-45 CrossRef
    7. Diels L, Dong Q et al (1995) The / czc operon of / Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. J Ind Microbiol 14(2):142-53 CrossRef
    8. Dopson M, Baker-Austin C et al (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149(8):1959-970 CrossRef
    9. Duddridge JE, Wainwright M (1980) Heavy metal accumulation by aquatic fungi and reduction in viability of / Gammarus pulex fed Cd2+ contaminated mycelium. Water Res 14(11):1605-611 CrossRef
    10. Eitinger T, Mandrand-Berthelot MA (2000) Nickel transport systems in microorganisms. Arch Microbiol 173(1):1- CrossRef
    11. Fagan M, Saier M Jr (1994) P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. J Mol Evol 38(1):57-9 CrossRef
    12. Fu B, Zhou H et al (2008) Bioleaching of chalcopyrite by pure and mixed cultures of / Acidithiobacillus spp. and / Leptospirillum ferriphilum. Int Biodeterior Biodegradation 62(2):109-15 CrossRef
    13. Hooshangi S, Bentley WE (2008) From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 19(6):550-55 CrossRef
    14. Kato S, Haruta S et al (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71(11):7099-106 CrossRef
    15. Liu Y, Yin H et al (2011) The effect of the introduction of exogenous strain / Acidithiobacillus thiooxidans A01 on functional gene expression, structure and function of indigenous consortium during pyrite bioleaching. Bioresour Technol 102(17):8092-098 CrossRef
    16. Mikolay A, Nies D (2009) The ABC-transporter AtmA is involved in nickel and cobalt resistance of / Cupriavidus metallidurans strain CH34. Antonie Van Leeuwenhoek 96(2):183-91 CrossRef
    17. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27(2-):313-39 CrossRef
    18. Nogami Y et al (1997) Inhibition of sulfur oxidizing activity by nickel ion in / Thiobacillus thiooxidans NB1-3 isolated from the corroded concrete. Jpn Soc Biosci Biotechnol Agrochem 61:1373-375 CrossRef
    19. Novo M, da Silva A et al (2000) / Thiobacillus ferrooxidans response to copper and other heavy metals: growth, protein synthesis and protein phosphorylation. Antonie Van Leeuwenhoek 77(2):187-95 CrossRef
    20. Nurmi P, ?zkaya B et al (2009) Inhibition kinetics of iron oxidation by / Leptospirillum ferriphilum in the presence of ferric, nickel and zinc ions. Hydrometallurgy 97(3-):137-45 CrossRef
    21. Penev K, Karamanev D (2009) Kinetics of ferrous iron oxidation by / Leptospirillum / ferriphilum at moderate to high total iron concentrations. Adv Mater Res 71-3:255-58 CrossRef
    22. Plumb JJ, McSweeney NJ et al (2008) Growth and activity of pure and mixed bioleaching strains on low grade chalcopyrite ore. Miner Eng 21(1):93-9 CrossRef
    23. Qiu M-q, Xiong S-y et al (2005) A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. Miner Eng 18(9):987-90 CrossRef
    24. Qiu M, Xiong S et al (2006) Efficacy of chalcopyrite bioleaching using a pure and a mixed bacterium. J Univ Sci Technol Beijing Miner Metall Mater 13(1):7-0
    25. Sampson MI, Phillips CV (2001) Influence of base metals on the oxidising ability of acidophilic bacteria during the oxidation of ferrous sulfate and mineral sulfide concentrates, using mesophiles and moderate thermophiles. Miner Eng 14(3):317-40 CrossRef
    26. Watling HR (2008) The bioleaching of nickel-copper sulfides. Hydrometallurgy 91(1-):70-8 CrossRef
    27. White C, Shaman AK et al (1998) An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat Biotech 16(6):572-75 CrossRef
    28. Wu C-b, Zeng W-m et al (2007) Bioleaching of chalcopyrite by mixed culture of moderately thermophilic microorganisms. J Cent South Univ Technol 14(4):474-78 CrossRef
    29. Zhang Y-s, Qin W-q et al (2008) Bioleaching of chalcopyrite by pure and mixed culture. Trans Nonferr Met Soc China 18(6):1491-496 CrossRef
    30. Zhang R-b, Wei M-m et al (2009) Application of real-time PCR to monitor population dynamics of defined mixed cultures of moderate thermophiles involved in bioleaching of chalcopyrite. Appl Microbiol Biotechnol 81(6):1161-168 CrossRef
    31. Zouboulis AI, Matis KA et al (1997) Biosorption of metals from dilute aqueous solutions. Sep Purif Rev 26(2):255-95 CrossRef
  • 作者单位:Ying Xu (1) (2)
    Huaqun Yin (1) (2)
    Huidan Jiang (1) (2)
    Yili Liang (1) (2)
    Xue Guo (1) (2)
    Liyuan Ma (1) (2)
    Yunhua Xiao (1) (2)
    Xueduan Liu (1) (2)

    1. School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
    2. Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 41008, Hunan, China
文摘
The effect of Ni2+ on the growth and functional gene expression of the pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum has been studied. Compared with the pure culture, the co-culture showed a stronger sulfur and ferrous ion oxidation activity. At 100?mM, A. thiooxidans in co-culture grew faster and had 48?h shorter lag phases. The cell number of A. thiooxidans in co-culture was about 5 times higher than that in pure culture. The existence of A. thiooxidans in co-culture activated the expression of some metal resistance genes in L. ferriphilum at least 16?h in advance. A. thiooxidans in co-culture tends to chose more efficient pathways to transport nickel ion, ensuring the export of heavy metal was faster and more effective than that in pure culture. All the data indicated that there were synergetic interactions between iron- and sulfur-oxidizing bacteria under the stress of Ni2+.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700