用户名: 密码: 验证码:
Giant piezoresistivity in polymer-derived amorphous SiAlCO ceramics
详细信息    查看全文
  • 作者:Yejie Cao ; Xueping Yang ; Ran Zhao ; Yaohan Chen ; Ni Li…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:51
  • 期:12
  • 页码:5646-5650
  • 全文大小:716 KB
  • 参考文献:1.Kovacs G (1998) Micromachined transducer sourcebook. WCB/McGraw-Hill, New York
    2.Kanda Y, Suzuki K (1991) Origin of the shear piezoresistance coefficient-PI-44 of n-type silicon. Phys Rev B B43:6754–6756. doi:10.​1103/​PhysRevB.​43.​6754 CrossRef
    3.Aslam M, Taher I, Masood A, Tamor M, Potter T (1992) Piezoresistivity in vapor-deposited diamond films. Appl Phys Lett 60(23):2923–2925. doi:10.​1063/​1.​106821 CrossRef
    4.Sahli S, Aslam DM (1998) Ultra-high sensitivity intra-grain poly-diamond piezoresistors. Sens Actuators A 71:193–197. doi:10.​1016/​S0924-4247(98)00181-2 CrossRef
    5.Zhang X, Pan Y, Zheng Q, Yi X (2001) Piezoresistance of conductor filled insulator composites. Polym Int 50:229–236. doi:10.​1002/​1097-0126(200102)50:​2 CrossRef
    6.Shor JS, Goldstein D, Kurtz AD (1993) Characterization of n-type beta-SiC as a piezoresistor. IEEE Trans Electron Devices 40:1093–1099. doi:10.​1109/​16.​214734 CrossRef
    7.Toriyama T, Sugiyama S (2002) Analysis of piezoresistance in n-type beta-SiC for high-temperature mechanical sensors. Appl Phys Lett 81:2797–2799. doi:10.​1063/​1.​1513652 CrossRef
    8.Zhang L, Wang Y, Wei Y, Xu W, Fang D, Zhai L, Lin K, An L (2008) A silicon carbonitride ceramic with anomalously high piezoresistivity. J Am Ceram Soc 91:1346–1349. doi:10.​1111/​j.​1551-2916.​2008.​02275.​x CrossRef
    9.Wang Y, Zhang L, Fan Y, Jiang D, An L (2009) Stress dependent piezoresistivity in tunneling-percolation systems. J Mater Sci 44(11):2814–2819. doi:10.​1007/​s10853-009-3371-5 CrossRef
    10.Terauds K, Sanchez-Jimenez PE, Raj R, Vakifahmetoglu C, Colombo P (2010) Giant piezoresistivity of polymer-derived ceramics at high temperatures. J Eur Ceram Soc 30:2203–2207. doi:10.​1016/​j.​jeurceramsoc.​2010.​02.​024 CrossRef
    11.Riedel R, Toma L, Janssen E, Nuffer J, Melz T, Hanselka H (2010) Piezoresistive effect in SiOC ceramics for integrated pressure sensors. J Am Ceram Soc 93:920–924. doi:10.​1111/​j.​1551-2916.​2009.​03496.​x CrossRef
    12.Riedel R, Kienzle A, Dressler W, Ruwisch L, Bill J, Aldinger F (1996) A silicoboron carbonitride ceramic stable to 2000 °C. Nature 382:796–798. doi:10.​1038/​382796a0 CrossRef
    13.Wang Y, Fei W, Fan T, Zhang L, Zhang W, An L (2006) Silicoaluminum carbonitride ceramic resist to oxidation/corrosion in water vapour. J Mater Res 21:1625–1628. doi:10.​1557/​jmr.​2006.​0210 CrossRef
    14.Wang Y, Fei W, An L (2006) Oxidation/corrosion of polymer-derived SiAlCN ceramics in water vapor. J Am Ceram Soc 89(3):1079–1082. doi:10.​1111/​j.​1551-2916.​2005.​00791.​x CrossRef
    15.Riedel R, Ruwisch LM, An L, Raj R (1998) Amorphous silicoboron carbonitride ceramic with anomalously high resistance to creep. J Am Ceram Soc 81:3341–3344. doi:10.​1111/​j.​1151-2916.​1998.​tb02780.​x CrossRef
    16.Sarkar S, Chunder A, Fei W, An L, Zhai L (2008) Superhydrophobic mats of polymer-derived ceramic fibers. J Am Ceram Soc 91(8):2751–2755. doi:10.​1111/​j.​1551-2916.​2008.​02500.​x CrossRef
    17.Li-Anne L, Zhang W, An L, Cross T, Artin LD, Victor B, John WD, Rishi R, Kristi A (2001) Ceramic MEMS: new materials, innovative processing and future applications. Am Ceram Soc Bull 80:25–30
    18.Tian Y, Shao G, Wang X, An L (2013) Fabrication of nano-scaled polymer-derived SiAlCN ceramic components using focused ion beam. J Micromech Microeng 23(9):095035. doi:10.​1088/​0960-1317/​23/​9/​095035 CrossRef
    19.Duan H, Li C, Yang W, Lojewski B, An L, Deng W (2013) Near-field electrospray printing of polymer-derived ceramics for micro-sensor applications. J MEMS 22(1):1–3. doi:10.​1109/​JMEMS.​2012.​2226932 CrossRef
    20.An L, Wang Y, Bharadwaj L, Fan Y, Zhang L, Jiang D, Sohn Y, Desai V, Kapat J, Chow L (2004) Silicoaluminum carbonitride with anomalously high resistance to oxidation and hot corrosion. Adv Eng Mater 6(5):337–340. doi:10.​1002/​adem.​200400010 CrossRef
    21.Wang Y, Fan Y, Zhang L, Burton S, Gan Z, An L (2005) Oxidation of polymer-derived SiAlCN ceramics. J Am Ceram Soc 88(11):3075–3080. doi:10.​1111/​j.​1551-2916.​2005.​00542.​x CrossRef
    22.Wang Y, Fan Y, Zhang L, Zhang W, An L (2006) Polymer-derived SiAlCN ceramics resist to oxidation at 1400 °C. Scr Mater 55:295–297. doi:10.​1016/​j.​scriptamat.​2006.​05.​004 CrossRef
    23.Cao Y, Yang X, An L (2016) Electric conductivity and microstructure evolution of polymer-derived SiAlCO ceramics. Ceram Int 42(3):4033–4038. doi:10.​1016/​j.​ceramint.​2015.​11.​073 CrossRef
    24.Godet C (2003) Physics of bandtail hopping in disordered carbons. Diam Relat Mater 12:159–165. doi:10.​1016/​S0925-9635(03)00017-7 CrossRef
    25.Ma B, Wang Y, Wang K, Li X, Zhang M, Liu J, An L (2015) Frequency-dependent conductive behavior of polymer-derived amorphous silicon carbonitride. Acta Mater 73:215–224. doi:10.​1016/​j.​actamat.​2015.​02.​020 CrossRef
  • 作者单位:Yejie Cao (1)
    Xueping Yang (1)
    Ran Zhao (1)
    Yaohan Chen (1)
    Ni Li (2)
    Linan An (1)

    1. Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL, 32816, USA
    2. Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, 32816, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
The piezoresistive behavior of polymer-derived amorphous SiAlCO ceramic is studied in a temperature range of 25–300 °C. It is shown that the material exhibits a giant gage factor of 7000–16,000, much higher than that for any reported high-temperature materials. The result also reveals that the material exhibits a positive temperature-dependent piezoresistive stress coefficient within the temperature range. The unusual piezoresistivity of the material was attributed to the structure of the SiAlCO, which consists of highly disordered graphene-like carbon nanoclusters dispersed within an amorphous matrix comprising of SiC x O4−x tetrahedra. The huge piezoresistivity, together with the processibility and low-cost, make the material very promising for high-temperature sensor applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700