用户名: 密码: 验证码:
The reactivity of phenancyl bromide under β-cyclodextrin as supramolecular catalyst: a computational survey
详细信息    查看全文
  • 作者:Yali Wan ; Xueye Wang ; Na Liu
  • 关键词:β ; Cyclodextrin (β ; CD) ; Density functional theory (DFT) ; Inclusion complex ; Phenacyl bromide ; Supramolecular catalyst
  • 刊名:Journal of Molecular Modeling
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:21
  • 期:5
  • 全文大小:1,028 KB
  • 参考文献:1.Zhang J, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65:1215–1233CrossRef
    2.Fleischmann C, Ritter H (2013) Color indicator for supramolecular polymer chemistry: phenolphthalein-containing thermo- and pH-sensitive N-(isopropyl) acrylamide copolymers and β-cyclodextrin complexation. Macromol Rapid Commun 34:1085–1089CrossRef
    3.Li Z, Couzijn EPA, Zhang X (2012) Intrinsic properties of α-cyclodextrin complexes with benzoate derivatives in the gas phase: an experimental and theoretical study. J Phys Chem B 116:943–950CrossRef
    4.López CA, de Vries AH, Marrink SJ (2013) Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes. Sci Rep-UK 3:2071
    5.Sabbavarapu NM, Bandaru M, Akkiligunta VK, Kakulapati RR, Yadavalli VDN (2009) Multicomponent approach towards the synthesis of substituted pyrroles under supramolecular catalysis using β-cyclodextrin as a catalyst in water under neutral conditions. Helv Chim Acta 92:2118–2124CrossRef
    6.Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59:645–666CrossRef
    7.Marcolino VA, Zanin GM, Durrant LR, Benassi MDT, Matioli G (2011) Interaction of curcumin and bixin with β-cyclodextrin: complexation methods, stability, and applications in food. J Agric Food Chem 59:3348–3357CrossRef
    8.Ikeda A, Ishikawa M, Aono R, Kikuchi JI, Akiyama M, Shinoda W (2013) Regioselective recognition of a [60] fullerene-bisadduct by cyclodextrin. J Org Chem 78:2534–2541CrossRef
    9.Sletten EM, Nakamura H, Jewett JC, Bertozzi CR (2010) Difluorobenzocyclooctyne: synthesis, reactivity, and stabilization by β-cyclodextrin. J Am Chem Soc 132:11799–11805CrossRef
    10.Zhang B, Breslow R (1997) Ester hydrolysis by a catalytic cyclodextrin dimer enzyme mimic with a metallobipyridyl linking group. J Am Chem Soc 119:1676–1681CrossRef
    11.Kumar A, Tripathi VD, Kumar P (2011) β-Cyclodextrin catalysed synthesis of tryptanthrin in water. Green Chem 13:51–54CrossRef
    12.Marchetti L, Levine M (2011) Biomimetic catalysis. ACS Catal 1:1090–1118CrossRef
    13.Marinescu L, Bols M (2010) Cyclodextrins as supramolecular organo-catalysts. Curr Org Chem 14:1380–1398CrossRef
    14.Bellia F, La Mendola D, Pedone C, Rizzarelli E, Saviano M, Vecchio G (2009) Selectively functionalized cyclodextrins and their metal complexes. Chem Soc Rev 38:2756–2781CrossRef
    15.Taterao MP, Sachin AI, Kumar VS (2007) Efficient synthesis of 2,4-disubstituted thiazoles using ionic liquid under ambient conditions: a practical approach towards the synthesis of Fanetizole. Tetrahedron 63:11066–11069CrossRef
    16.Madhav B, Narayana Murthy S, Prakash Reddy V, Rama Rao K, Nageswar YVD (2009) Biomimetic synthesis of quinoxalines in water. Tetrahedron Lett 50:6025–6028CrossRef
    17.Mariappan J, Amarajothi D, Kasi P (2014) One-pot synthesis of 2-substituted quinoxalines using K10-montmorillonite as heterogeneous catalyst. Tetrahedron Lett 55:1616–1620CrossRef
    18.Meshram HM, Santosh Kumar G, Ramesh P, Chennakesava Reddy B (2010) A mild and convenient synthesis of quinoxalines via cyclization–oxidation process using DABCO as catalyst. Tetrahedron Lett 51:2580–2585CrossRef
    19.Lingaiah N, Raghu M, Lingappa Y, Rajashaker B (2011) Polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium for one-pot synthesis of polysubstituted pyrroles under catalyst-free conditions. Tetrahedron Lett 52:3401–3404CrossRef
    20.Tietze LF, Nordmann G (2001) Synthesis of a linear oligomeric styrylpyrrole using multiple Heck and Wittig reaction. Synlett 03:337–340
    21.Seitz LE, Suling WJ, Reynolds RC (2002) Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J Med Chem 45:5604–5606CrossRef
    22.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 2003 revision B.05. Gaussian Inc, Pittsburgh
    23.Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRef
    24.Mennucci B (2012) Polarizable continuum model. Wires Comput Mol Sci 2:386–404CrossRef
    25.Wang T, Wu Y, Wang X (2014) Molecular structure and vibrational bands and 13C chemical shift assignments of both enmein-type diterpenoids by DFT study. Spectrochim Acta A 117:449–458CrossRef
    26.Toušek J, Miert SV, Pieters L, Baelen GV, Hostyn S, Maes BUW, Lemière G, Dommisse R, Marek R (2008) Structural and solvent effects on the 13C and 15 N NMR chemical shifts of indoloquinoline alkaloids: experimental and DFT study. Magn Reson Chem 46:42–51CrossRef
    27.Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. Wires Comput Mol Sci 2012(2):1–42CrossRef
    28.Chocholoušová J, Špirko V, Hobza P (2004) First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–HO and improper blue-shifted C–HO hydrogen bonds. Phys Chem Chem Phys 6:37–41CrossRef
    29.Yan Z, Zuo Z, Lv X, Li Z, Li Z, Huang W (2012) Adsorption of NO on MoO3 (0 1 0) surface with different location of terminal oxygen vacancy defects: a density functional theory study. Appl Surf Sci 258:3163–3167CrossRef
    30.Politzer P, Abu-Awwad F (1998) A comparative analysis of Hartree-Fock and Kohn-Sham orbital energies. Theor Chem Accounts 99:83–87CrossRef
    31.Zhan CG, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107:4184–4195CrossRef
    32.Prabhu AAM, Sankaranarayanan RK, Venkatesh G, Rajendiran N (2012) Dual fluorescence of fast blue RR and fast violet B: effects of solvents and cyclodextrin complexation. J Phys Chem B 116:9061–9074CrossRef
    33.Dinar K, Sahra K, Seridi A, Kadri M (2014) Inclusion complexes of N-sulfamoyloxazolidinones with β-cyclodextrin: a molecular modeling approach. Chem Phys Lett 595–596:113–12034CrossRef
  • 作者单位:Yali Wan (1)
    Xueye Wang (1)
    Na Liu (1)

    1. Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
Phenacyl bromide as one starting material in multicomponent reactions (MCRs) with β-cyclodextrin (β-CD) as catalyst can get an excellent yield in short reaction times. The interaction of β-CD with phenacyl bromide plays an important role in this process. This paper studies the complex of β-CD with phenacyl bromide using density functional theory (DFT) method. Energy is investigated to find out the lowest energy of two possible complexation models. Hydrogen bonds are researched on the basis of natural bonding orbital (NBO) analysis. The relative position between phenacyl bromide and β-CD is confirmed by 1H nuclear magnetic resonance (1HNMR). The results of frontier molecular orbitals and charge distribution reveal that β-CD catalyst improves the reactivity and electrophilicity of phenacyl bromide, meanwhile, the carbonyl group of phenacyl bromide more easily gives a carbocationic intermediate in the presence of β-CD as catalyst. The reactivity of phenancyl bromide under β-CD as supramolecular catalysis is improved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700