用户名: 密码: 验证码:
Chemical characteristics of carbonaceous aerosols during dust storms over Xi’an in China
详细信息    查看全文
  • 作者:Xuxiang Li (1)
    Junji Cao (1) (2)
    Judith Chow (3)
    Yongming Han (2)
    Shuncheng Lee (4)
    John Watson (3)
  • 关键词:carbonate carbon ; organic carbon ; elemental carbon ; dust storm
  • 刊名:Advances in Atmospheric Sciences
  • 出版年:2008
  • 出版时间:September 2008
  • 年:2008
  • 卷:25
  • 期:5
  • 页码:847-855
  • 全文大小:767KB
  • 参考文献:1. Alfaro, S. C., and Coauthors, 2003: Chemical and optical characterization of aerosols measured in spring 2002 at the ACE-Asia supersite, Zhenbeitai, China. / J. Geophys. Res., 108(D23), 8641, doi:10.1029/2002JD003214. CrossRef
    2. Arimoto, R., and Coauthors, 2004: Chemical composition of atmospheric aerosols from Zhenbeitai, China, and Gosan, South Korea, during ACE-Asia. / J. Geophys. Res., 109(D19S04), doi:10.1029/2003JD004323.
    3. Arimoto, R., and Coauthors, 2006: Characterization of Asian Dust during ACE-Asia. / Global and Platenary Change, 52, 23-6. CrossRef
    4. Biscaye, P. E., F. E. Grousset, M. Revel, S. V. D. Gaast, G. A. Zielinski, A. Vaars, and G. Kukla, 1997: Asian provenance of Last Glacial Maximum dust in GISP2 ice core, summit, Greenland. / J. Geophys. Res., 102, 26765-6781. CrossRef
    5. Cao, J. J., S.C. Lee, K. F. Ho, X.Y. Zhang, S. C. Zou, K. Fung, J. G. Watson, and J. C. Chow, 2003a: Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period. / Atmos. Environ., 37, 1451-460. CrossRef
    6. Cao, J. J., S. C. Lee, K. F. Ho, S. C. Zou, X. Y. Zhang, J. G. Pan, 2003b: Spatial and seasonal distributions of atmospheric carbonaceous aerosols in Pearl River Delta Region, China. / China Particuology, 1, 33-7. CrossRef
    7. Cao, J. J., S. C. Lee, K. F. Ho, S. C. Zou, K. Fung, Y. Li, J. G. Watson, J. C. Chow, 2004: Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta region, China. / Atmos. Environ., 38, 4447-456. CrossRef
    8. Cao, J. J., and Coauthors, 2005a: Characterization of airborne carbonate over a site on Asian Dust source regions during 2002 spring and its climatic and environmental significance. / J. Geophys. Res., 110(D03203), doi:10.1029/2004JD005244.
    9. Cao, J. J., and Coauthors, 2005b: Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. / Atmos. Chem. Phys., 5, 3127-137. CrossRef
    10. Chow, J. C., J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell, 1993: The DRI thermal/optical reflectance carbon analysis system: Description, evaluation and applications in US air quality studies. / Atmos. Environ., 27A(8), 1185-201.
    11. Chow, J. C., J. G. Watson, L. W. A. Chen, W. P. Arnott, H. Moosmüller, and K. K. Fung, 2004: Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. / Environmental Science and Technology, 38(16), 4414-422. CrossRef
    12. Chung, Y. S., H. S. Kim, J. Dulama, and J. Harris, 2003: On heavy dustfall observed with explosive sandstorms in Chongwon-Chongju, Korea in 2002. / Atmos. Environ., 373, 425-433.
    13. Dentener, F. J., G. R. Carmichael, Y. Zhang, J. Lelieveld, and P. J. Crutzen., 1996: The role of mineral aerosols as a reactive surface in the global troposphere. / J. Geophys. Res., 101, 22869-2889. CrossRef
    14. Duce, R., C. K. Unni, B. Ray, J. J. Prospero, and J. T. Merrill, 1980: Long range transport of soil dust from Asia to the tropical North Pacific. / Science, 209, 1522-524. CrossRef
    15. Gray, H. A., G. R. Cass, J. J. Huntzicker, E. K. Heyerdahl, and J. A. Rau, 1986: Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles. / Environmental Science and Technology, 20(6), 580-89. CrossRef
    16. He, K. B., and Coauthors, 2001: The characteristics of PM2.5 in Beijing, China. / Atmos. Environ., 35, 4959-970. CrossRef
    17. Huebert, B. J., T. Bates, P. B. Russell, G. Y. Shi, Y. J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima, 2003: An overview of ACE-Asia: strategies for quantifying the relationships between Asian aerosols and their climatic impacts. / J. Geophys. Res., 108(D23), 8633, doi:10.1029/2003JD003550. CrossRef
    18. Jacobson, M. Z., 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. / Nature, 409, 695-72. CrossRef
    19. Jacobson, M. Z., 2002: Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. / J. Geophys. Res., 107(D19), 4410, doi:10.1029/2001JD001376. CrossRef
    20. Japar, S. M., W. W. Brachaczek, R. A. Grose, J. M. Norbeck, and W. R. Pierson, 1986: The contribution of element carbon to the optical properties of rural atmospheric aerosols. / Atmos. Environ., 20, 1281-289. CrossRef
    21. Kim, E., and P. K. Hopke, 2004: Improving source identification of fine particles in a rural northeastern U. S. area utilizing temperature-resolved carbon fractions. / J. Geophys. Res., 109(D09204), doi:10.1029/2003JD004199.
    22. Lee, S. C., Y. Cheng, K. F. Ho, J. J. Cao, P. K. K. Louie, J. C. Chow, and J. G. Watson, 2006: PM1.0 and PM2.5 Characteristics in the Roadside Environment of Hong Kong. / Aerosol Science and Technology, 40, 157-65. CrossRef
    23. Li, X. X., Z. X. Shen, J. J. Cao, C. S. Zhu, S. X. Liu, and T. Zhang, 2006: Distribution of carbonaceous aerosol during Spring 2005 over the Horqin Sandland in northeastern China. / China Particuology, 4(6), 316-22. CrossRef
    24. Li, Y., 2004: Characteristics and source apportionment of carbonaceous aerosol over Xi’an atmosphere. M. S. thesis, Institute of Earth Environment, Chinese Academy of Sciences, 74pp.
    25. Menon, S., J. Hansen, L. Nazarenko, and Y. F. Luo, 2002: Climate effects of black carbon aerosols in China and India. / Science, 297, 2250-253. CrossRef
    26. Novakov, T. and J. E. Penner, 1993: Large contribution of organic aerosols to cloud-condensation-nuclei concentrations. / Nature, 365, 823-26. CrossRef
    27. Park, S. S., Y. J. Kim, and K. Fung, 2001: Characteristics of PM2.5 carbonaceous aerosol in the Sihwa industrial area, Korea. / Atmosp. Environ., 35, 657-65. CrossRef
    28. Saxena, P., and L. M. Hildemann, 1996: Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. / Journal of Atmospheric Chemistry, 24, 57-09. CrossRef
    29. Seinfeld, J. H., and Coauthors, 2004: ACE-Asia: Regional climatic and atmospheric chemical effects of Asian dust and pollution. / Bull. Amer. Meteor. Soc., 85(3), 367-80. CrossRef
    30. Shen, Z. X., J. J. Cao, X. X. Li, T. Okuda, Y. Q. Wang, and X. Y. Zhang, 2006: Mass concentration and mineralogical characteristics of aerosol particles collected at Dunhuang during ACE-Asia. / Adv. Atmos. Sci., 23, 291-98, doi: 10.1007/s00376-006-0291-z. CrossRef
    31. Shen, Z. X., J. J. Cao, R. Arimoto, R. J. Zhang, D. M. Jie, S. X. Liu, and C. S. Zhu, 2007: Chemical composition and source characterization of spring aerosol over Horqin sand-land in northeastern China. / J. Geophys. Res., 112, D14315, doi:10.1029/2006JD007991. CrossRef
    32. Solomon, P. A., T. Fall, L. Salmon, G. R. Cass, H. A. Gray, and A. Davision, 1989: Chemical characteristics of PM10 aerosols collected in the Los Angeles Area. / Journal of the Air Pollution Control Association, 39, 154-63.
    33. Sugimoto, N., I. Uno, M. Nishikawa, A. Shimizu, I. Matsui, X. H. Dong, Y. Chen, and H. Quan, 2003: Record heavy Asian dust in Beijing in 2002: Observations and model analysis of recent events. / Geophys. Res. Lett., 30, 1640, doi:10.1029/2002GL016349. CrossRef
    34. Turpin, B. J., and J. J. Huntzicker, 1995: Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS. / Atmos. Environ., 29A, 3527-544. CrossRef
    35. Turpin, B. J., and H. J. Lim, 2001: Species contributions to PM2.5 mass concentrations: Revisting common assumptions for estimating organic mass. / Aerosol Science & Technology, 35, 602-10.
    36. Ye, B. M., X. L. Ji, H. Z. Yang, X. H. Yao, C. K. Chan, S. H. Cadle, T. Chan, and P. A. Mulaw, 2003: Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. / Atmos. Environ., 37, 499-10. CrossRef
    37. Yu, J. H., T. Chen, B. Guinot, H. Cachier, T. Yu, W. Q. Liu, and X. Wang, 2006: Characteristics of carbonaceous particles in Beijing during winter and summer 2003. / Adv. Atmos. Sci., 23, 468-73, doi: 10.1007/s00376-006-0468-5. CrossRef
    38. Zhang, R. J., Y. F. Xu, and Z. W. Han, 2004: A comparison analysis of chemical composition of aerosols in the dust and non-dust periods in Beijing. / Adv. Atmos. Sci., 21, 300-05. CrossRef
    39. Zhang, X. Y., S. L. Gong, R. Arimoto, Z. X. Shen, F. M. Mei, D. Wang, and Y. Cheng, 2003: Characterization and temporal variation of Asian dust aerosol from a site in the northern Chinese deserts. / Journal of Atmospheric Chemistry, 44, 241-57. CrossRef
  • 作者单位:Xuxiang Li (1)
    Junji Cao (1) (2)
    Judith Chow (3)
    Yongming Han (2)
    Shuncheng Lee (4)
    John Watson (3)

    1. Department of Environmental Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, China
    2. State Key Lab of Loess & Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710075, China
    3. Desert Research Institute, Reno, NV, USA
    4. The Hong Kong Polytechnic University, Hong Kong, China
  • ISSN:1861-9533
文摘
Characterization of carbonaceous aerosols including CC (carbonate carbon), OC (organic carbon), and EC (elemental carbon) were investigated at Xi’an, China, near Asian dust source regions in spring 2002. OC varied between 8.2 and 63.7 μg m, while EC ranged between 2.4 and 17.2 μ m during the observation period. OC variations followed a similar pattern to EC and the correlation coefficient between OC and EC is 0.89 (n=31). The average percentage of total carbon (TC, sum of CC, OC, and EC) in PM2.5 during dust storm (DS) events was 13.6%, which is lower than that during non-dust storm (NDS) periods (22.7%). CC, OC, and EC accounted for 12.9%, 70.7%, and 16.4% of TC during DS events, respectively. The average ratio of OC/EC was 5.0 in DS events and 3.3 in NDS periods. The OC-EC correlation (R 2=0.76, n=6) was good in DS events, while it was stronger (R 2=0.90, n=25) in NDS periods. The percentage of water-soluble OC (WSOC) in TC accounted for 15.7%, and varied between 13.3% and 22.3% during DS events. The distribution of eight carbon fractions indicated that local emissions such as motor vehicle exhaust were the dominant contributors to carbonaceous particles. During DS events, soil dust dominated the chemical composition, contributing 69% to the PM2.5 mass, followed by organic matter (12.8%), sulfate (4%), EC (2.2%), and chloride (1.6%). Consequently, CC was mainly entrained by Asian dust. However, even in the atmosphere near Asian dust source regions, OC and EC in atmospheric dust were controlled by local emission rather than the transport of Asian dust.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700