用户名: 密码: 验证码:
Fuglede–Putnam type theorems via the generalized Aluthge transform
详细信息    查看全文
  • 作者:M. H. M. Rashid (1)
  • 关键词:Fuglede–Putnam theorem ; Generalized Aluthge transform ; Class $$A(s ; t)$$ A ( s ; t ) operators ; Generalized derivation ; 47B20 ; 47A63
  • 刊名:Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:108
  • 期:2
  • 页码:1021-1034
  • 全文大小:222 KB
  • 参考文献:1. Aluthge, A.: On p-hyponormat operators for \(0 \le p \le 1\) . Integral Equ. Oper. Theory 13, 307-15 (1990)
    2. Aluthge, A., Wang, D.: \(w\) -hyponormal operators. Integral Equ. Oper. Theory 36, 1-0 (2000) get="_blank" title="It opens in new window">CrossRef
    3. Ando, T.: Operators with norm condition. Acta. Sci. Math. 33(4), 359-65 (1972)
    4. Anderson, J.H., Foias, C.: properties which normal operators share with normal derivations and related operators. Pac. J. Math. 61, 313-25 (1975) get="_blank" title="It opens in new window">CrossRef
    5. Bachir, A., Lombaria, F.: Fuglede-Putnnam theorem for \(w\) -hyponormal operators. Math. Ineq. Appl. 12, 777-86 (2012)
    6. Berberian, S.K.: Extensions of a theorem of Fuglede and Putnam. Proc. Am. Math. Soc. 71, 113-14 (1978) get="_blank" title="It opens in new window">CrossRef
    7. Duggal, B.P.: On generalised Putnam-Fuglede theorems. Mh. Math. 107, 309-32 (1989) get="_blank" title="It opens in new window">CrossRef
    8. Douglas, R.G.: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17, 413-15 (1966) get="_blank" title="It opens in new window">CrossRef
    9. Duggal, B.P.: A remark on generalised Putnam-Fuglede theorems. Proc. Am. Math. Soc. 129, 83-7 (2001) get="_blank" title="It opens in new window">CrossRef
    10. Fujii, M., Jung, D., Lee, S.-H., Lee, M.-Y., Nakamoto, R.: Some classses of operators related to paranormal and log-hyponormal operators. Math. Jpn. 51(3), 395-02 (2000)
    11. Furuta, T.: On the class of Paranormal operators. Proc. Jpn. Acad. 43, 594-98 (1967) get="_blank" title="It opens in new window">CrossRef
    12. Furuta, T., Ito, M., Yamazaki, T.: A subclass of paranormal operators including class of \(log\) -hyponormal and several related classes. Sci. math. 1, 389-03 (1998)
    13. Furuta, T.: Invitation to Linear Operator. Taylor and Francis, London (2001) get="_blank" title="It opens in new window">CrossRef
    14. Ito, M.: Some classes of operators associated with generalized Aluthge transformation. Sut J. Math. 35(1), 149-65 (1999)
    15. Kim, I.H.: The Fuglede-Putnam theorem for \((p, k)\) -quasihyponormal operators. J. Ineq. Appl. 1- (2006). Article ID 47481
    16. Kittaneh, F.: Inequalities for the Schatten p-norm II. Glasg. Math. J. 29, 99-04 (1987) get="_blank" title="It opens in new window">CrossRef
    17. Kittaneh, F.: Normal derivation in normal ideal. Proc. Am. Math. Soc. 123, 1779-785 (1995) get="_blank" title="It opens in new window">CrossRef
    18. Mecheri, S., Tanahashi, K., Uchiyama, A.: Fuglede-Putnam theorem for \(p\) -hyponormal or class \(\cal Y\) operators. Bull. Korean. Math. Soc. 43, 747-53 (2006)
    19. Moslehian, M.S., Nabavi, S.M.S.: Sales, Fuglede-Putnam type theorems via the Aluthge transform. Positivity (2012). doi:10.1007/s11117-011-0154-4
    20. Patel, S.M., Tanahashi, K., Uchiyama, A., Yanagida, M.: Quasinormality and Fuglede-Putnam theorem for class \(A(s, t)\) operators. Nihonkai Math. J. 17, 49-7 (2006)
    21. Radjabalipour, M.: An extension of Putnam-Fuglede theorem for hyponormal operators. Math. Z. 194, 117-20 (1987) get="_blank" title="It opens in new window">CrossRef
    22. Rashid, M.H.M., Zguitti, H.: Weyl type theorems and class \(A(s, t)\) operators. Math. Ineq. Appl. 14(3), 581-94 (2011)
    23. Rashid, M.H.M.: An extension of Fuglede-Putnam theorem for \(w\) -hyponormal operators. Afr. Diaspora J. Math. (N.S.) 14(1), 106-18 (2012)
    24. Rashid, M.H.M.: Class \(wA(s, t)\) operators and quasisimilarity. Port. Math. 69(4), 305-20 (2012) get="_blank" title="It opens in new window">CrossRef
    25. Takahashi, K.: On the converse of Putnam-Fuglede theorem. Acta Sci. Math. (Szeged) 43, 123-25 (1981)
    26. Uchiyama, A., Yochino, T.: On the class \(\cal Y\) operators. Nihonkai. Math. J. 8, 174-79 (1997)
    27. Uchiyama, A., Tanahashi, K.: Fuglede-Putnam theorem for \(p\) -hyponormal or \(\log \) -hyponormal operators. Glassg. Math. J. 44, 397-10 (2002) get="_blank" title="It opens in new window">CrossRef
    28. Ito, M., Yamazaki, T.: Relations betweens two equalities \((B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{r}{r+p}}\ge B^r\) and \( A^p\ge (A^{\frac{p}{2}}B^rA^{\frac{p}{2}})^{\frac{p}{r+p}}\) and their applications. Integral Equ. Oper. Theory 44, 442-50 (2002) get="_blank" title="It opens in new window">CrossRef
  • 作者单位:M. H. M. Rashid (1)

    1. Department of Mathematics and Statistics, Faculty of Science, Mu’tah University, P.O.Box (7), Alkarak, Jordan
  • ISSN:1579-1505
文摘
Let \(T=U|T|\) and \(S=V|S|\) be the polar decompositions of \(T\in {\fancyscript{L}}({\fancyscript{H}})\) and \(S\in {\fancyscript{L}}({\fancyscript{K}})\) and let \(Com (T,S)\) stand for the set of operators \(X\in \fancyscript{L}(\fancyscript{K},\fancyscript{H})\) such that \(TX=XS.\) A pair \((T,S)\) is said to have the Fuglede–Putnam property if \(Com(T,S)\subseteq Com(T^*,S^*).\) Let \(\widetilde{Z}(s,t)\) denote the generalized Aluthge transform of a bounded operator \(Z\) . We show that (i) if \(T\) is invertible class \(A(s,t)\) operator with \(s+t=1\) and \(S^*\) is a class \({\mathcal {Y}}\) , then \(Com(T,S)\subseteq Com(T^*,S^*);\) (ii) if the pair \((T,S)\) have the Fuglede–Putnam property, then the range of \(\delta _{T,S}\) is orthogonal to the kernel of \(\delta _{T,S}\) ; (iii) if the pair \((T,S)\) have the Fuglede–Putnam property, then \(Com(T,S)\subseteq Com(\widetilde{T}(s,t),\widetilde{S}(s,t))\) , furthermore, if \(T\) is invertible, then \(Com(T,S)= Com(\widetilde{T}(s,t),\widetilde{S}(s,t))\) . Finally, if \(Re(U|T|^s)\ge a>0\) and \(Re(V|S|^s)\ge a>0\) and \(X\) is an operator such that \(U^*X=XV,\) then we prove that \(\left\| (\widetilde{T}(s,s))^*X-X\widetilde{S}(s,s)\right\| _p\ge 2a\left\| |T|^sX-X|S|^s\right\| _p\) for any \(1\le p\le \infty \) such that \(0

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700