用户名: 密码: 验证码:
Hydromechanical coupling tests for mechanical and permeability characteristics of fractured limestone in complete stress–strain process
详细信息    查看全文
文摘
To clarify mechanical and permeability characteristics of fractured limestone in complete stress–strain process, the hydromechanical coupling tests with various differential water pressures and confining pressures were performed. The mechanical characteristics of fractured limestone specimens are sensitive to confining pressure, differential water pressure, and effective stress. The increasing differential water pressure weakens the rock strength and deformation modulus by activating the lateral deformation of fractured limestone, which is attributed to the decrease in the effective minimum principal stress. The experimental results verify the validity of Mohr–Coulomb yield criterion considering the effective stress effect under hydromechanical coupling condition. The permeability values display four stages of decrease–gradual increase–rapid increase–small drop in complete stress–strain process, which roughly correspond to volumetric compression stage, elastic deformation stage, yield, and post-peak stage, as well as residual strength stage, respectively. At a low differential water pressure in the range of 2–5 MPa, the corresponding relationship mentioned above is obvious. However, at high differential water pressures up to 8–14 MPa, there is a deviation from the correspondence above, i.e., permeability reduction stage is shorter than the stage of volumetric compression. A cubic polynomial is used to describe the relationship between permeability and volumetric strain at volumetric compression stage. However, it is difficult to describe the relationship between the permeability and volumetric strain by a uniform fitting equation at the dilatancy stage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700