用户名: 密码: 验证码:
The simultaneous introduction of low and high molecular weight of biodegradable Poly(diethylene glycol adipate)s to Plasticize and Toughen Polylactide
详细信息    查看全文
  • 作者:Yanping Hao ; Huili Yang ; Huiliang Zhang ; Ge Gao ; Lisong Dong
  • 关键词:Polylactide ; Poly(diethylene glycol adipate) ; Plasticize ; Toughness ; Crystalline
  • 刊名:Fibers and Polymers
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:12
  • 页码:2519-2528
  • 全文大小:1,173 KB
  • 参考文献:1.D. F. Wu, L. Wu, L. F. Wu, B. Xu, Y. S. Zhang, and M. Zhang, J. Polym. Sci. Pt. B-Polym. Phys., 45, 1100 (2007).CrossRef
    2.A. M. Reed and D. K. Gilding, Polymer, 22, 494 (1981).CrossRef
    3.B. Kalb and A. J. Pennings, Polymer, 21, 607 (1980).CrossRef
    4.M. Carla, M. Antonio, and D. N. Vito, Macromol. Chem., 5, 1694 (1993).
    5.Z. Kulinski and E. Piorkowska, Polymer, 46, 290 (2005).CrossRef
    6.S. K. Dogan, S. Gumus, A. Aytac, and G. Ozkoc, Fiber. Polym., 14, 1422 (2013).CrossRef
    7.E. Piorkowska, Z. Kulinski, A. Galeski, and R. Masirek, Polymer, 47, 7178 (2006).CrossRef
    8.N. Ljungberg and B. Wesslen, Polymer, 44, 7679 (2003).CrossRef
    9.N. Ljungberg, T. Andersson, and B. Wesslen, J. Appl. Polym. Sci., 88, 3239 (2003).CrossRef
    10.M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffieux, and E. Wintermantel, J. Appl. Polym. Sci., 90, 1731 (2003).CrossRef
    11.S. Acobsen and H. G. Fritz, Polym. Eng. Sci., 39, 1303 (1999).CrossRef
    12.N. Jungberg and B. Wesslen, J. Appl. Polym. Sci., 94, 2140 (2004).CrossRef
    13.N. Jungberg and B. Wesslen, J. Appl. Polym. Sci., 86, 1227 (2002).CrossRef
    14.N. Jungberg and B. Wesslen, Biomacromolecules, 6, 1789 (2005).CrossRef
    15.M. Ekelund, B. Azhdar, M. S. Hedenqvist, and U. W. Gedde, Polym. Degrad. Stabil., 93, 1704 (2008).CrossRef
    16.A. Marcilla, S. Garcia, and J. C. Garcia-Quesada, Polym. Test., 27, 221 (2008).CrossRef
    17.H. Y. Liang, Y. P. Hao, S. R. Liu, H. L. Zhang, Y. S. Li, L. S. Dong, and H. X. Zhang, Polym. Bull., 70, 3487 (2013).CrossRef
    18.Z. Su, Q. Li, Y. Liu, G. Hu, and C. Wu, Eur. Polym. J., 45, 2428 (2009).CrossRef
    19.Y. J. Li and H. Shimizu, Macromol. Biosci., 7, 921 (2007).CrossRef
    20.W. Zhang, L. Chen, and Y. Zhang, Polymer, 50, 1311 (2009).CrossRef
    21.K. Y. Zhang, X. H. Ran, X. M. Wang, C. Y. Han, L. J. Han, X. Wen, Y. G. Zhuang, and L. S. Dong, Polym. Eng. Sci., 51, 2370 (2011).CrossRef
    22.Z. Kulinski and E. Piorkowska, Polymer, 46, 10290 (2005).CrossRef
    23.E. Piorkowska, Z. Kulinski, A. Galeski, and R. Masirek, Polymer, 47, 7178 (2006).CrossRef
    24.A. J. Nijenhuis, E. Colstee, D. W. Grijpma, and A. J. Pennings, Polymer, 37, 5849 (1996).CrossRef
    25.O. Martin and L. Avérous, Polymer, 42, 6209 (2001).CrossRef
    26.H. L. Zhang, J. Y. Fang, H. H. Ge, L. J. Han, X. M. Wang, Y. P. Hao, C. Y. Han, and L. S. Dong, Polym. Eng. Sci., 53, 112 (2013).CrossRef
    27.P. J. Pan and Y. Inoue, Prog. Polym. Sci., 34, 605 (2009).CrossRef
    28.A. S. Ueda, Y. Chatani, and H. Tadokoro, Polym. J., 2, 387 (1971).CrossRef
    29.L. Jiang, M. P. Wolcott, and J. Zhang, Biomacromolecules, 7, 199 (2006).CrossRef
    30.L. Yin, D. Shi, Y. Liu, and J. Yin, Polym. Int., 58, 919 (2009).CrossRef
    31.T. L. Smith, Polym. Sci. Symp., 32, 269 (1971).CrossRef
    32.Z. Liang and R. K. Y. Li, J. Appl. Polym. Sci., 77, 409 (2000).CrossRef
    33.X. Gao, C. Qu, and Q. Fu, Polym. Int., 53, 1666 (2004).CrossRef
    34.C. Zhao, G. Wu, C. Zhou, H. Yang, and H. Zhang, J. Polym. Sci., 44, 696 (2006).CrossRef
    35.J. D. Ferry, “Viscoelastic Properties of Polymer”, 3rd ed., pp.41–42, Wiley, New York, 1980.
    36.M. Bousmina, P. Bataille, S. Sapieha, and H. Schreiber, J. Rheol., 39, 499 (1995).CrossRef
    37.H. L. Zhang, J. Y. Fang, H. H. Ge, L. J. Han, X. M. Wang, Y. P. Hao, C. Y. Han, and L. S. Dong, Polym. Eng. Sci., 53, 112 (2013).CrossRef
    38.B. Meng, J. J. Deng, and Q. Liu, Eur. Polym. J., 48, 127 (2012).CrossRef
  • 作者单位:Yanping Hao (1) (2)
    Huili Yang (1)
    Huiliang Zhang (1)
    Ge Gao (2)
    Lisong Dong (1)

    1. Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Changchun, 130022, P. R. China
    2. College of Chemistry, Jilin University, Changchun, 130012, P. R. China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
  • 出版者:The Korean Fiber Society
  • ISSN:1875-0052
文摘
Plasticization and toughness of polylactide (PLA) are of interesting due to its poor machinability and brittleness. Here, low and high macromolecular weight of Poly(diethylene glycol adipate)s (L-PDEGA and H-PDEGA) were used to plasticize and toughen PLA simultaneously. The results showed that the mechanical properties of PLA remained almost unchanged when only 5 wt% L-PDEGA was added. However, H-PDEGA were effective in lowering the glass transition temperatures as well as in increasing the elongation at break and the impact strength. Compared with neat PLA, the crystallinity of PLA increased with increasing H-PDEGA content. When 20 wt% H-PDEGA was added, the impact strength and the elongation at break increased from 3.1 kJ/m2 and 5.6 % of neat PLA to 68.3 kJ/m2 to 272.4 %, respectively. Additionally, morphological study revealed that the fracture behavior of PLA had been changed from brittle to ductile after H-PDEGA incorporated. The results of rheological analysis showed that the storage modulus and complex viscosity in the melt state of the blends were decreased compared with that of neat PLA. Keywords Polylactide Poly(diethylene glycol adipate) Plasticize Toughness Crystalline

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700