用户名: 密码: 验证码:
Photosynthetic carbon and nitrogen metabolism and the relationship between their metabolites and lipid peroxidation in dwarf bamboo (Fargesia rufa Yi) during drought and subsequent recovery
详细信息    查看全文
  • 作者:Chenggang Liu ; Yanjie Wang ; Kaiwen Pan ; Yanqiang Jin ; Jin Liang ; Wei Li ; Lin Zhang
  • 关键词:Carbohydrates ; Amino acids ; Proline ; Reactive oxygen species ; Osmotic adjustment ; Dwarf bamboo
  • 刊名:Trees - Structure and Function
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:29
  • 期:6
  • 页码:1633-1647
  • 全文大小:1,028 KB
  • 参考文献:Aranjuelo I, Molero G, Erice G, Avice JC, Nogu茅s S (2011) Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J Exp Bot 62:111鈥?23. doi:10.鈥?093/鈥媕xb/鈥媏rq249 PubMedCentral CrossRef PubMed
    Basu PS, Ali M, Chaturvedi SK (2007) Osmotic adjustment increases water uptake, remobilization of assimilates and maintains photosynthesis in chickpea under drought. Indian J Exp Biol 45:261鈥?67PubMed
    Bian SM, Jiang YW (2009) Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Sci Hortic 120:264鈥?70. doi:10.鈥?016/鈥媕.鈥媠cienta.鈥?008.鈥?0.鈥?14 CrossRef
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248鈥?54. doi:10.鈥?016/鈥?003-2697(76)90527-3 CrossRef PubMed
    Cai ZQ, Chen YJ, Guo YH, Cao KF (2005) Responses of two field-grown coffee species to drought and re-hydration. Photosynthetica 43:187鈥?93. doi:10.鈥?007/鈥媠11099-005-0032-z CrossRef
    Cou茅e I, Sulmon C, Gouesbet G, El-Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449鈥?59. doi:10.鈥?016/鈥媕.鈥媘ib.鈥?006.鈥?1.鈥?01 CrossRef PubMed
    DaCosta M, Huang B (2007) Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in response to drought stress. J Am Soc Hortic Sci 132:319鈥?26
    Dhont C, Bertrand A, Castonguay Y, Isabel N (2011) Changes of carbon and nitrogen metabolites in white spruce (Picea glauca [Moench] Voss) of contrasted growth phenotypes. Trees Struct Funct 25:711鈥?23. doi:10.鈥?007/鈥媠00468-011-0549-7 CrossRef
    Flexas J, Bota J, Galm茅s J, Medrano H, Ribas-Carb贸 M (2006) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plant 127:343鈥?52. doi:10.鈥?111/鈥媕.鈥?399-3054.鈥?005.鈥?0621.鈥媥 CrossRef
    Gall茅 A, Feller U (2007) Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery. Physiol Plant 131:412鈥?21. doi:10.鈥?111/鈥媕.鈥?399-3054.鈥?007.鈥?0972.鈥媥 CrossRef PubMed
    Gall茅 A, Haldimann P, Feller U (2007) Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytol 174:799鈥?10. doi:10.鈥?111/鈥媕.鈥?469-8137.鈥?007.鈥?2047.鈥媥 CrossRef PubMed
    Gauthier PPG, Crous KY, Ayub G, Duan HL, Weerasinghe LK, Ellsworth DS, Tjoelker MG, Evans JR, Tissue DT, Atkin OK (2014) Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO2] and temperature. J Exp Bot. doi:10.鈥?093/鈥媕xb/鈥媏ru367 PubMedCentral PubMed
    Gupta N, Thind SK, Bains NS (2014) Glycine betaine application modifies biochemical attributes of osmotic adjustment in drought stressed wheat. Plant Growth Regul 72:221鈥?28. doi:10.鈥?007/鈥媠10725-013-9853-0 CrossRef
    Hikosaka K, Kato MC, Hirose T (2004) Photosynthetic rates and partitioning of absorbed light energy in photoinhibited leaves. Physiol Plant 121:699鈥?08. doi:10.鈥?111/鈥媕.鈥?399-3054.鈥?004.鈥?0364.鈥媥 CrossRef
    IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change [Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds)]. Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp 582
    Kaiser J, Lewis OAM (1984) Nitrate reductase and glutamine synthetase activity in leaves and roots of nitrate-fed Helianthus annuus L. Plant Soil 77:127鈥?30. doi:10.鈥?007/鈥婤F02182818 CrossRef
    Kang Y, Han YH, Torres-Jerez I, Wang MY, Tang YH, Monteros M, Udvardi M (2011) System responses to long-term drought and re-watering of two contrasting alfalfa varieties. Plant J 68:871鈥?89. doi:10.鈥?111/鈥媕.鈥?365-313X.鈥?011.鈥?4738.鈥媥 CrossRef PubMed
    Lawlor DW (2002) Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot 53:773鈥?87. doi:10.鈥?093/鈥媕exbot/鈥?3.鈥?70.鈥?73 CrossRef PubMed
    Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275鈥?94. doi:10.鈥?046/鈥媕.鈥?016-8025.鈥?001.鈥?0814.鈥媥 CrossRef PubMed
    Li HS (2000) The experimental principle and technology of plant physiology and biochemistry. Higher Education Press, Beijing
    Li YP, Zhang YB, Zhang XL, Korpelainen H, Berninger F, Li CY (2013) Effects of elevated CO2 and temperature on photosynthesis and leaf traits of an understory dwarf bamboo in subalpine forest zone, China. Physiol Plant 148:261鈥?72. doi:10.鈥?111/鈥媕.鈥?399-3054.鈥?012.鈥?1705.鈥媥 CrossRef PubMed
    Lillo C (1984) Diurnal variations of nitrite reductase, glutamine synthetase, glutamate synthase, alanine aminotransferase and aspartate aminotransferase in barley leaves. Physiol Plant 61:214鈥?18. doi:10.鈥?111/鈥媕.鈥?399-3054.鈥?984.鈥媡b05899.鈥媥 CrossRef
    Liu CG, Wang YJ, Pan KW, Zhu TT, Li W, Zhang L (2014) Carbon and nitrogen metabolism in leaves and roots of dwarf bamboo (Fargesia denudata Yi) subjected to drought for two consecutive years during sprouting period. J Plant Growth Regul 33:243鈥?55. doi:10.鈥?007/鈥媠00344-013-9367-z CrossRef
    Llorens L, Pe帽elas J, Estiarte M (2003) Ecophysiological responses of two Mediterranean shrubs, Erica multiflora and Globularia alypum, to experimentally drier and warmer conditions. Physiol Plant 119:231鈥?43. doi:10.鈥?034/鈥媕.鈥?399-3054.鈥?003.鈥?0174.鈥媥 CrossRef
    Miyashita K, Tanakamaru S, Maitani T, Kimura K (2005) Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ Exp Bot 53:205鈥?14. doi:10.鈥?016/鈥媕.鈥媏nvexpbot.鈥?004.鈥?3.鈥?15 CrossRef
    Muller B, Pantin F, G茅nard M, Turc O, Freixes S, Piques M, Gibon Y (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62:1715鈥?729. doi:10.鈥?093/鈥媕xb/鈥媏rq438 CrossRef PubMed
    Murchie EH, Hubbart S, Chen YZ, Peng SB, Horton P (2002) Acclimation of rice photosynthesis to irradiance under field conditions. Plant Physiol 130:1999鈥?010. doi:10.鈥?104/鈥媝p.鈥?11098 PubMedCentral CrossRef PubMed
    Naya L, Ladrera R, Ramos J, Gonz谩lez EM, Arrese-Igor C, Minchin FR, Becana M (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144:1104鈥?114. doi:10.鈥?104/鈥媝p.鈥?07.鈥?99648 PubMedCentral CrossRef PubMed
    Oliveira Neto CF, Lobato AKS, Costa RCL, Maia WJMS, Santos Filho BG, Alves GAR, Brinez B, Neves HKB, Lopes MJS, Cruz FJR (2009) Nitrogen compounds and enzyme activities in sorghum induced to water deficit during three stages. Plant Soil Environ 55:238鈥?44
    Patakas A, Nikolaou N, Zioziou E, Radoglou K, Noitsakis B (2002) The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Sci 163:361鈥?67. doi:10.鈥?016/鈥婼0168-9452(02)00140-1 CrossRef
    Prado CHBA, de Moraes JAPV (1997) Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions. Photosynthetica 33:103鈥?12. doi:10.鈥?023/鈥婣:鈥?022183423630 CrossRef
    Praxedes SC, DaMatta FM, Loureiro MEG, Ferr茫o MA, Cordeiro AT (2006) Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ Exp Bot 56:263鈥?73. doi:10.鈥?016/鈥媕.鈥媏nvexpbot.鈥?005.鈥?2.鈥?08 CrossRef
    Raven JA, Handley LL, Andrews M (2004) Global aspects of C/N interactions determining plant-environment interactions. J Exp Bot 55:11鈥?5. doi:10.鈥?093/鈥媕xb/鈥媏rh011 CrossRef PubMed
    Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189鈥?202. doi:10.鈥?016/鈥媕.鈥媕plph.鈥?004.鈥?1.鈥?13 CrossRef
    Robredo A, P茅rez-L贸pez U, Miranda-Apodaca J, Lacuesta M, Mena-Petite A, Mu帽oz-Rueda A (2011) Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Environ Exp Bot 71:399鈥?08. doi:10.鈥?016/鈥媕.鈥媏nvexpbot.鈥?011.鈥?2.鈥?11
    S谩nchez-Rodr铆guez E, Rubio-Wilhelmi MM, Rios JJ, Blasco B, Rosales MA, Melgarejo R, Romero L, Ruiz JM (2011) Ammonia production and assimilation: its importance as a tolerance mechanism during moderate water deficit in tomato plants. J Plant Physiol 168:816鈥?23. doi:10.鈥?016/鈥媕.鈥媕plph.鈥?010.鈥?1.鈥?18 CrossRef PubMed
    Schl眉ter U, Colmsee C, Scholz U, Br盲utigam A, Weber AP, Zellerhoff N, Bucher M, Fahnenstich H, Sonnewald U (2013) Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genom 14:442. doi:10.鈥?186/鈥?471-2164-14-442 CrossRef
    Selote DS, Khanna-Chopra R (2006) Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiol Plant 127:494鈥?06. doi:10.鈥?111/鈥媕.鈥?399-3054.鈥?006.鈥?0678.鈥媥 CrossRef
    Sibout R, Guerrier G (1998) Solute incompatibility with glutamine synthetase in water-stressed (Populus nigra). Environ Exp Bot 40:173鈥?78. doi:10.鈥?016/鈥婼0098-8472(98)00032-X CrossRef
    Sicher RC, Timlin D, Bailey B (2012) Responses of growth and primary metabolism of water-stressed barley roots to rehydration. J Plant Physiol 169:686鈥?95. doi:10.鈥?016/鈥媕.鈥媕plph.鈥?012.鈥?1.鈥?02 CrossRef PubMed
    Sinclair TR, Pinter PJ, Kimball BA, Adamsen FJ, LaMorte RL, Wall GW, Hunsaker DJ, Adam N, Brook TJ, Garcia RL, Thompson T, Leavitt S, Mattias A (2000) Leaf nitrogen concentration of wheat subjected to elevated [CO2] and either water or N deficits. Agric Ecosyst Environ 79:53鈥?0. doi:10.鈥?016/鈥婼0167-8809(99)00146-2 CrossRef
    Suzuki A, Knaff DB (2005) Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism. Photosynth Res 83:191鈥?17. doi:10.鈥?007/鈥媠11120-004-3478-0 CrossRef PubMed
    Tang ZC (1999) Experimental guide of modern plant physiology. Science Press, Shanghai
    Thomas FM, Hilker C (2000) Nitrate reduction in leaves and roots of young pedunculate oaks (Quercus robur) growing on different nitrate concentrations. Environ Exp Bot 43:19鈥?2. doi:10.鈥?016/鈥婼0098-8472(99)00040-4 CrossRef
    Upadhyaya H, Panda SK, Dutta BK (2008) Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. Acta Physiol Plant 30:457鈥?68. doi:10.鈥?007/鈥媠11738-008-0143-9 CrossRef
    Upadhyaya H, Sahoo L, Panda SK (2013) Molecular physiology of osmotic stress in plants. In: Rout GR, Das AB (ed) Molecular stress physiology of plants. Springer, New York, pp 179鈥?92. doi:10.鈥?007/鈥?78-81-322-0807-5_鈥?
    Xiao XW, Yang F, Zhang S, Korpelainen H, Li CY (2009) Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiol Plant 136:150鈥?68. doi:10.鈥?111/鈥媕.鈥?399-3054.鈥?009.鈥?1222.鈥媥 CrossRef PubMed
    Xu ZZ, Zhou GS (2006) Nitrogen metabolism and photosynthesis in Leymus chinensis in response to long-term soil drought. J Plant Growth Regul 25:252鈥?66. doi:10.鈥?007/鈥媠00344-006-0043-4 CrossRef
    Xu ZZ, Zhou GS (2007) Photosynthetic recovery of a perennial grass Leymus chinensis after different periods of soil drought. Plant Prod Sci 10:277鈥?85. doi:10.鈥?626/鈥媝ps.鈥?0.鈥?77 CrossRef
    Yang JC, Zhang JH, Wang ZQ, Xu GW, Zhu QS (2004) Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol 135:1621鈥?629. doi:10.鈥?104/鈥媝p.鈥?04.鈥?41038 PubMedCentral CrossRef PubMed
    Zhang ZL, Qu WJ (2003) The experimental guidance of plant physiology. Higher Education Press, Beijing
  • 作者单位:Chenggang Liu (1)
    Yanjie Wang (1) (2)
    Kaiwen Pan (1)
    Yanqiang Jin (3)
    Jin Liang (1)
    Wei Li (1)
    Lin Zhang (1)

    1. Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section聽4, Renmin South Road, Chengdu, 610041, Sichuan, China
    2. College of Life Science, Sichuan Normal University, Chengdu, 610101, China
    3. Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Forestry
    Plant Sciences
    Agriculture
    Plant Anatomy and Development
    Plant Pathology
    Plant Physiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2285
文摘
Key message Differential regulations of C and N metabolism in dwarf bamboo improve the capacity of osmotic adjustment, and also their metabolites may play an important role for protection against membrane lipid peroxidation under drought, thus accelerating recovery after rewatering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700