用户名: 密码: 验证码:
PGC-1α is associated with C2C12 Myoblast differentiation
详细信息    查看全文
  • 作者:Yaqiu Lin (1)
    Yanying Zhao (1)
    Ruiwen Li (2)
    Jiaqi Gong (1)
    Yucai Zheng (1)
    Yong Wang (1)
  • 关键词:PGC ; ; Myoblast differentiation ; Myosin heavy chain isoforms ; MyoD ; MyoG
  • 刊名:Central European Journal of Biology
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:9
  • 期:11
  • 页码:1030-1036
  • 全文大小:619 KB
  • 参考文献:1. Marfella R., Sasso F.C., Cacciapuoti F., Portoghese M., Rizzo M.R., Siniscalchi M., Carbonara O., Ferraraccio F., Torella M., Petrella A., Balestrieri M.L., Stiuso P., Nappi G., Paolisso G, Tight glycemic control may increase regenerative potential of myocardium during acute infarction, J. Clin. Endocrinol. Metab., 2012, 97, 933-42 CrossRef
    2. Shadrach J.L., Wagers A.J., Stem cells for skeletal muscle repair, Philosophical Transactions B, 2011, 366, 2297-306 CrossRef
    3. Shi XZ., Garry D.J., Muscle stem cells in development, regeneration, and disease, Genes & Dev., 2006, 20, 1692-708 CrossRef
    4. Gurung R., Parnaik V.K., Cyclin D3 promotes myogenic differentiation and Pax7 transcription, J Cell Biochem., 2012, 113, 209-19 CrossRef
    5. Buckingham M., Making muscle in animals, Trends. Genet., 1992, 8, 144-49 CrossRef
    6. Buck I.M., Skeletal muscle form action in vertebrates, Curr. Opin. Genet. Develop., 2001, 11, 440-52 CrossRef
    7. Brzóska E., Grabowska I., Wróbel E., Moraczewski J., Syndecan-4 distribution during the differentiation of satellite cells isolated from soleus muscle treated by phorbol ester and calphostin C, Cell. Mol. Biol. Lett., 2002, 7, 269-78
    8. Zhu L.N., Ren Y., Chen J.Q, Wang Y.Z., Effects of myogenin on muscle fiber types and key metabolic enzymes in gene transfer mice and C2C12 myoblasts, Gene, 2013, 532, 246-52 CrossRef
    9. Puigserver P., Adelmant G., Wu Z., Fan M., Xu J., O’Malley B., Spiegelman B.M., Activation of PPARγ coactivator-1 through transcription factor docking, Science, 1999, 286, 1368-371 CrossRef
    10. Kang C.H., Ji L.L, Role of PGC-1α signaling in skeletal muscle health and disease Ann N Y Acad Sci., 2012, 1271(1), 110-17 CrossRef
    11. LeMoine C.M.R., Lougheed S.C., Moyes C.D., Modular Evolution of PGC-1α in Vertebrates, J. Mol. Evol., 2010, 70, 492-05 CrossRef
    12. Zhu L., Sun G., Zhang H., Zhang Y., Chen X., Jiang X., Krauss S., Zhang J., Xiang Y., Zhang C.Y., PGC-1alpha is a key regulator of glucose-induced proliferation and migration in vascular smooth muscle cells. PLoS. One., 2009, 4, e418.
    13. Summermatter S., Troxler H., Santos G., Handschin C., Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity, Biochem. Biophys. Res. Commun., 2011, 408, 180-85 CrossRef
    14. Ventura-Clapier R., Garnier A., Veksler V., Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha, Cardiovasc. Res., 2008, 79, 208-17 CrossRef
    15. Lin J., Puigserver P., Donovan J., Tarr P., Spiegelman B.M., Peroxisome proliferatoractivated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor, J. Biol. Chem., 2002, 277, 1645-648 CrossRef
    16. Andersson U., Scarpulla R.C., PGC-1 related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1 dependent transcription in mammalian cells, Mol. Cell. Biol., 2001, 21, 3738-749 CrossRef
    17. Handschin C., Rhee J., Lin J., Tarr P.T., Spiegelman B.M., An autoregulatory loop controls peroxisome proliferator-activated receptor Γ coactivator 1α expression in muscle, Proc. Natl. Acad. Sci. 2003, 100, 7111-116 CrossRef
    18. Lin J., Wu H., Tarr P.T., Zhang C.Y., Wu Z., Boss O., Michael L.F., Puigserver P., Isotani E., Olsom E.N., Lowell B., Bassed-Duby R., Spiegelman B.M., Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fiber, Nature, 2002, 418, 797-01 CrossRef
    19. Yamaguchi T., Suzuki T., Arai H., Tanabe S., Atomi Y., Continuous mild heat stress induces differentiation of mammalian myoblasts, shifting fiber type from fast to slow, Am.J. Physiol. Cell. Physiol., 2010, 298, 140-48 CrossRef
    20. Ueda M., Watanabe K., Sato K., Akiba Y., Toyomizu M., Possible role for avPGC-1 in the control of expression of fiber type, along with avUCP and avANT mRNAs in the skeletal muscles of coldexposed chickens, FEBS. lett., 2005, 579, 11-7 CrossRef
    21. Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCt method, Methods, 2001, 25, 402-08 CrossRef
    22. Phelps1 D.E., Hsiao K.M., Li Y., Hu N.P., Franklin D.S., Westphal E., Lee Eva Y.-H. P., Xiong Y., Coupled transcriptional and translational control of cyclin-dependent kinase inhibitor p18INK4c expression during myogenesis, Mol. Cell. Biol., 1998, 18, 2334-343
    23. Cowell R.M., Blake K.R., Inoue T., Russell J.W., Regulation of PGC-1α and PGC-1α-responsive genes with forskolin-induced Schwann cell differentiation, Neuroscience Letters, 2008, 439, 269-74 CrossRef
    24. Valero T., Moschopoulou G., Mayor-Lopez L., Kintzios S., Moderate superoxide production is an early promoter of mitochondrial biogenesis in differentiating N2a neuroblastoma cells, Neurochemistry Int., 2012, 61, 1333-433 CrossRef
    25. Uldry M., Yang W.L., St-Pierre J.L., Lin J.D., Seale P., Spiegelman B.M., Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation, Cell Metabolism, 2006, 3, 333-41 CrossRef
  • 作者单位:Yaqiu Lin (1)
    Yanying Zhao (1)
    Ruiwen Li (2)
    Jiaqi Gong (1)
    Yucai Zheng (1)
    Yong Wang (1)

    1. College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, China
    2. Reproductive and endocrine laboratory, Chengdu Woman-Child Central Hospital, Chengdu, 610051, China
  • ISSN:1644-3632
文摘
PGC-1α has been implicated as an important mediator of functional capacity of skeletal muscle. However, the role of PGC-1α in myoblast differentiation remains unexplored. In the present study, we observed a significant up-regulation of PGC-1α expression during the differentiation of murine C2C12 myoblast. To understand the biological significance of PGC-1α up-regulation in myoblast differentiation, C2C12 cells were transfected with murine PGC-1α cDNA and siRNA targeting PGC-1α, respectively. PGC-1α over-expressing clones fused to form typical myotubes with higher mRNA level of myosin heavy chain isoform I (MyHCI) and lower MyHCIIX. No obvious differentiation was observed in PGC-1α-targeted siRNA-transfected cells with marked decrement of mRNA levels of MyHCI and MyHCIIX. Furthermore, PGC-1α increased the expression of MyoD and MyoG in C2C12 cells, which controlled the commitment of precursor cells to myotubes. These results indicate that PGC-1α is associated with myoblast differentiation and elevates MyoD and MyoG expression levels in C2C12 cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700