用户名: 密码: 验证码:
Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production
详细信息    查看全文
  • 作者:Bing Wang ; Yingde Wang ; Yongpeng Lei ; Nan Wu ; Yanzi Gou ; Cheng Han…
  • 关键词:silicon carbide ; carbon ; photocatalyst ; co ; catalyst free ; hydrogen production
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:9
  • 期:3
  • 页码:886-898
  • 全文大小:2,626 KB
  • 参考文献:[1]Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätze, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593–1596.CrossRef
    [2]Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductorbased photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.CrossRef
    [3]Ran, J.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earthabundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.CrossRef
    [4]Han, Q.; Zhao, F.; Hu, C. G.; Lv, L. X.; Zhang, Z. P.; Chen, N.; Qu, L. T. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 2015, 8, 1718–1728.CrossRef
    [5]Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.CrossRef
    [6]Xie, Y. J.; Zhang, X.; Ma, P. J.; Wu, Z. J.; Piao, L. Y. Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction for improved photocatalytic activities. Nano Res. 2015, 8, 2092–2101.CrossRef
    [7]Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14121–14127.CrossRef
    [8]Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175–183.CrossRef
    [9]He, C. Y.; Wu, X. L.; Shen, J. C.; Chu, P. K. High-efficiency electrochemical hydrogen evolution based on surface autocatalytic effect of ultrathin 3C-SiC nanocrystals. Nano Lett. 2012, 12, 1545–1548.CrossRef
    [10]Liu, J. K.; Wen, S. H.; Hou, Y.; Zuo, F.; Beran, G. J. O.; Feng, P. Y. Boron carbides as efficient, metal-free, visiblelight- responsive photocatalysts. Angew. Chem., Int. Ed. 2013, 52, 3241–3245.CrossRef
    [11]Ishikawa, T.; Yamaoka, H.; Harada, Y.; Fujii, T.; Nagasawa, T. A general process for in situ formation of functional surface layers on ceramics. Nature 2002, 416, 64–67.CrossRef
    [12]Masson, R.; Keller, V.; Keller, N. β-SiC alveolar foams as a structured photocatalytic support for the gas phase photocatalytic degradation of methylethylketone. Appl. Catal. B: Environ. 2015, 170–171, 301–311.CrossRef
    [13]Wang, H.; Yu, J. S.; Li, X. D.; Kim, D. P. Inorganic polymer-derived hollow SiC and filled SiCN sphere assemblies from a 3DOM carbon template. Chem. Commun. 2004, 2352–2353.
    [14]Xi, G. C.; Liu, Y. K.; Liu, X. Y.; Wang, X. Q.; Qian, Y. T. Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures. J. Phys. Chem. B 2006, 110, 14172–14178.CrossRef
    [15]Hao, J. Y.; Wang, Y. Y.; Tong, X. L.; Jin, G. Q.; Guo, X. Y. SiC nanomaterials with different morphologies for photocatalytic hydrogen production under visible light irradiation. Catal. Today 2013, 212, 220–224.CrossRef
    [16]Zhou, W. M.; Yan, L. J.; Wang, Y.; Zhang, Y. F. SiC nanowires: A photocatalytic nanomaterial. Appl. Phys. Lett. 2006, 89, 013105.CrossRef
    [17]Wang, Y. W.; Guo, X. N.; Dong, L. L.; Jin, G. Q.; Wang, Y. Y.; Guo, X. Y. Enhanced photocatalytic performance of chemically bonded SiC-graphene composites for visiblelight-driven overall water splitting. Int. J. Hydrogen Energy 2013, 38, 12733–12738.CrossRef
    [18]Wang, M. M.; Chen, J. J.; Liao, X.; Liu, Z. X.; Zhang, J. D.; Gao, L.; Li, Y. Highly efficient photocatalytic hydrogen production of platinum nanoparticle-decorated SiC nanowires under simulated sunlight irradiation. Int. J. Hydrogen Energy 2014, 39, 14581–14587.CrossRef
    [19]Peng, Y.; Guo, Z. N.; Yang, J. J.; Wang, D.; Yuan, W. X. Enhanced photocatalytic H2 evolution over micro-SiC by coupling with CdS under visible light irradiation. J. Mater. Chem. A 2014, 2, 6296–6300.CrossRef
    [20]Zhou, X. F.; Liu, Y. J.; Li, X.; Gao, Q. Z.; Liu, X. T.; Fang, Y. P. Topological morphology conversion towards SnO2/SiC hollow sphere nanochains with efficient photocatalytic hydrogen evolution. Chem. Commun. 2014, 1070–1073.
    [21]Hao, J. Y.; Wang, Y. Y.; Tong, X. L.; Jin, G. Q.; Guo, X. Y. Photocatalytic hydrogen production over modified SiC nanowires under visible light irradiation. Int. J. Hydrogen Energy 2012, 37, 15038–15044.CrossRef
    [22]Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.CrossRef
    [23]Park, Y.; Kim, W.; Park, H.; Tachikawa, T.; Majima, T.; Choi, W. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl. Catal. B: Environ. 2009, 91, 355–361.CrossRef
    [24]Wu, N.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Han, C. Flexible N-doped TiO2/C ultrafine fiber mat and its photocatalytic activity under simulated sunlight. Appl. Surf. Sci. 2014, 319, 136–142.CrossRef
    [25]Han, S. C.; Hu, L. F.; Liang, Z. Q.; Wageh, S.; Al-Ghamdi, A. A.; Chen, Y. S.; Fang, X. S. One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv. Funct. Mater. 2014, 24, 5719–5727.CrossRef
    [26]Yang, J. J.; Zeng, X. P.; Chen, L. J.; Yuan, W. X. Photocatalytic water splitting to hydrogen production of reduced graphene oxide/SiC under visible light. Appl. Phys. Lett. 2013, 102, 083101.CrossRef
    [27]Yang, T.; Chang, X. W.; Chen, J. H.; Chou, K. C.; Hou, X. M. B-doped 3C-SiC nanowires with a finned microstructure for efficient visible light-driven photocatalytic hydrogen production. Nanoscale 2015, 7, 8955–8961.CrossRef
    [28]Gao, Y. T.; Wang, Y. Q.; Wang, Y. X. Photocatalytic hydrogen evolution from water on SiC under visible light irradiation. React. Kinet. Catal. Lett. 2007, 91, 13–19.CrossRef
    [29]Zhang, Y. L.; Xia, T.; Wallenmeyer, P.; Harris, C. X.; Peterson, A. A.; Corsiglia, G. A.; Murowchick, J.; Chen, X. B. Photocatalytic hydrogen generation from pure water using silicon carbide nanoparticles. Energy Technol. 2014, 2, 183–187.CrossRef
    [30]Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrovic, A.; Volbers, D.; Wyrwich, R.; Döblinger, M.; Susha, A. S.; Rogach, A. L. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2014, 13, 1013–1018.CrossRef
    [31]Ye, H.; Titchenal N.; Gogotsi. Y.; Ko, F. SiC nanowires synthesized from electrospun nanofiber templates. Adv. Mater. 2005, 17, 1531–1535.CrossRef
    [32]Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209.CrossRef
    [33]Ma, J.; Li, G. Y.; Chu, Z. Y.; Li, X. D.; Li, Y. H.; Hu, T. J. Microstructure and growth mechanism of multi-layer graphene standing on polycrystalline SiC microspheres. Carbon 2014, 69, 634–637.CrossRef
    [34]Zhang, Y.; Zang, J. B.; Dong, L.; Cheng, X. Z.; Zhao, Y. L.; Wang, Y. H. A Ti-coated nano-SiC supported platinum electrocatalyst for improved activity and durability in direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 10146–10153.CrossRef
    [35]Wang, H.; Zhou, Q. J.; Jian, K.; Shao, C. W.; Zhu, Y. H. Preparation of ordered porous ceramic joint on C/SiC composites and its joining technique. J. Inorg. Mater. 2013, 28, 763–768.CrossRef
    [36]Wang, B.; Wang, Y. D.; Lei, Y. P.; Wu, N.; Gou, Y. Z.; Han, C.; Fang, D. Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. J. Mater. Chem. A 2014, 2, 20873–20881.CrossRef
    [37]Shi, Y. F.; Zhang, F.; Hu Y. S.; Sun, X. H.; Zhang, Y. C.; Lee, H. I.; Chen, L. Q.; Stucky, G. D. Low-temperature pseudomorphic transformation of ordered hierarchical macromesoporous SiO2/C nanocomposite to SiC via magnesiothermic reduction. J. Am. Chem. Soc. 2010, 132, 5552–5553.CrossRef
    [38]Rowland, C. E.; Hannah, D. C.; Demortière, A.; Yang, J. H.; Cook, R. E.; Prakapenka, V. B.; Kortshagen, U.; Schaller, R. D. Silicon nanocrystals at elevated temperatures: Retention of photoluminescence and diamond silicon to β-silicon carbide phase transition. ACS Nano 2014, 8, 9219–9223.CrossRef
    [39]Wen, G. Z.; Zeng, X. B.; Liao, W. G.; Cao, C. C. Crystallization mechanism of silicon quantum dots upon thermal annealing of hydrogenated amorphous Si-rich silicon carbide films. Thin Solid Films 2014, 552, 18–23.CrossRef
    [40]Yin, L. W.; Bando, Y.; Zhu, Y. C.; Li, Y. B. Synthesis, structure, and photoluminescence of very thin and wide alpha silicon nitride (α-Si3N4) single-crystalline nanobelts. Appl. Phys. Lett. 2003, 83, 3584–3586.CrossRef
    [41]Zhang, L. G.; Jin, H.; Yang, W. Y.; Xie, Z. P.; Miao, H. Z.; An, L. Optical properties of single-crystalline α-Si3N4 nanobelts. Appl. Phys. Lett. 2005, 86, 061908.CrossRef
    [42]Cuong, D. V.; Truong-Phuoc, L.; Tran-Thanh, T.; Nhut, J. M.; Nguyen-Dinh, L.; Janowska, I.; Begin, D.; Pham-Huu, C. Nitrogen-doped carbon nanotubes decorated silicon carbide as a metal-free catalyst for partial oxidation of H2S. Appl. Catal. A: Gen. 2014, 482, 397–406.CrossRef
    [43]Wu, X. L.; Xiong, S. J.; Zhu, J.; Wang, J.; Shen, J. C.; Chu, P. K. Identification of surface structures on 3C-SiC nanocrystals with hydrogen and hydroxyl bonding by photoluminescence. Nano Lett. 2009, 9, 4053–4060.CrossRef
    [44]Shi, Q.; Wang, Y. D.; Wang, Z. M.; Lei, Y. P.; Wang, B.; Wu, N.; Han, C.; Xie, S.; Gou, Y. Z. 3D interconnected networks constructed by in situ growth of N-doped graphene/carbon nanotubes on cobalt-containing carbon nanofibers for enhanced oxygen reduction. Nano Res., in press, 2009 DOI 10.1007/s12274-015-0911-y.
    [45]Cheng, Y. L.; Zhang, J. F.; Zhang, Y. F.; Chen, X. L.; Wang, Y.; Ma, H. M.; Cao, X. Q. Preparation of hollow carbon and silicon carbide fibers with different cross-sections by using electrospun fibers as templates. Eur. J. Inorg. Chem. 2009, 2009, 4248–4254.CrossRef
    [46]Cheng, G. M.; Chang, T. H.; Qin, Q. Q.; Huang, H. C.; Zhu, Y. Mechanical properties of silicon carbide nanowires: Effect of size-dependent defect density. Nano Lett. 2014, 14, 754–758.CrossRef
    [47]Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619.CrossRef
    [48]Liu, J. M.; Zhang, Q. C.; Yang, J. C.; Ma, H. Y.; Tade, M. O.; Wang, S. B.; Liu, J. Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis. Chem. Commun. 2014, 50, 13971–13974.CrossRef
    [49]Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884.CrossRef
    [50]Sun, Z. H.; Guo, J. J.; Zhu, S. M.; Mao, L.; Ma, J.; Zhang, D. A high-performance Bi2WO6-graphene photocatalyst for visible light-induced H2 and O2 generation. Nanoscale 2014, 6, 2186–2193.CrossRef
    [51]Seong, H. K.; Choi, H. J.; Lee, S. K.; Lee, J. I.; Choi, D. J. Optical and electrical transport properties in silicon carbide nanowires. Appl. Phys. Lett. 2004, 85, 1256–1258.CrossRef
    [52]Li, Z. J.; Zhao, J.; Zhang, M.; Xia, J. Y.; Meng, A. L. SiC nanowires with thickness-controlled SiO2 shells: Fabrication, mechanism, reaction kinetics and photoluminescence properties. Nano Res. 2014, 7, 462–472.CrossRef
    [53]Yu, J. G.; Dai, G. P.; Huang, B. B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J. Phys. Chem. C 2009, 113, 16394–16401.CrossRef
    [54]Jiao, Z. F.; Guo, X. N.; Zhai, Z. Y.; Jin, G. Q.; Wang, X. M.; Guo, X. Y. The enhanced catalytic performance of Pd/SiC for the hydrogenation of furan derivatives at ambient temperature under visible light irradiation. Catal. Sci. Technol. 2014, 4, 2494–2498.CrossRef
    [55]Robinson, V. S.; Fisher, T. S.; Michel, J. A.; Lukehart, C. M. Work function reduction of graphitic nanofibers by potassium intercalation. App. Phys. Lett. 2005, 87, 061501.CrossRef
  • 作者单位:Bing Wang (1)
    Yingde Wang (1)
    Yongpeng Lei (2)
    Nan Wu (1)
    Yanzi Gou (1)
    Cheng Han (1)
    Song Xie (1)
    Dong Fang (3)

    1. Science and Technology on Advanced Ceramic Fiber and Composites Laboratory, National University of Defense Technology, Changsha, 410073, China
    2. College of Basic Education, National University of Defense Technology, Changsha, 410073, China
    3. College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430074, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Silicon carbide (SiC) has been considered a promising metal-free photocatalyst due to its unique photoelectrical properties and thermal/chemical stability. However, its performance suffers from the fast recombination of charge carriers. Herein, we report mesoporous SiC nanofibers with in situ embedded graphitic carbon (SiC NFs-Cx) synthesized via a one-step carbothermal reduction between electrospun carbon nanofibers and Si powders. In the absence of a noble metal co-catalyst, the hydrogen evolution efficiency of SiC NFs-Cx is significantly improved under both simulated solar light (180.2 μmol·g–1·h–1) and visible light irradiation (31.0 μmol·g–1·h–1) in high-pH solution. The efficient simultaneous separation of charge carriers plays a critical role in the high photocatalytic activity. The embedded carbon can swiftly transfer the photogenerated electrons and improve light absorption, whereas the additional hydroxyl anions (OH–) in highpH solution can accelerate the trapping of holes. Our results demonstrate that the production of SiC NFs-Cx, which contains exclusively earth-abundant elements, scaled up, and is environmentally friendly, has great potential for practical applications. This work may provide a new pathway for designing stable, lowcost, high efficiency, and co-catalyst-free photocatalysts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700