用户名: 密码: 验证码:
Extension of Laplace transform–homotopy perturbation method to solve nonlinear differential equations with variable coefficients defined with Robin boundary conditions
详细信息    查看全文
文摘
This article proposes the application of Laplace transform–homotopy perturbation method with variable coefficients, in order to find analytical approximate solutions for nonlinear differential equations with variable coefficients. As case study, we present the oxygen diffusion problem in a spherical cell including nonlinear Michaelis–Menten uptake kinetics. It is noteworthy that this important problem introduces the Robin boundary conditions as an additional difficulty. In fact, after comparing figures between approximate and exact solutions, we will see that the proposed solutions are highly accurate. What is more, we will see that the square residual error of our solutions is 1.808511632 × 10−7 and 2.560574954 × 10−10 which confirms the accuracy of the proposed method, taking into account that we will just keep the first-order approximation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700