用户名: 密码: 验证码:
Active-set prediction for interior point methods using controlled perturbations
详细信息    查看全文
  • 作者:Coralia Cartis ; Yiming Yan
  • 关键词:Active ; set prediction ; Interior point methods ; Linear programming
  • 刊名:Computational Optimization and Applications
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:63
  • 期:3
  • 页码:639-684
  • 全文大小:1,482 KB
  • 参考文献:1.Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. Optim. Methods Softw. 11(1–4), 275–302 (1999)CrossRef MathSciNet
    2.Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows. Special simplex implementations and optimality conditions, pp. 201–257. Wiley, Hoboken (2009)CrossRef
    3.Benson, H., Shanno, D.: An exact primal–dual penalty method approach to warmstarting interior-point methods for linear programming. Comput. Optim. Appl. 38(3), 371–399 (2007)CrossRef MathSciNet MATH
    4.Berkelaar, M., Eikland, K., Notebaert, P.: lpsolve : open source (mixed-integer) linear programming system. Eindhoven University of Technology. http://​lpsolve.​sourceforge.​net/​5.​5/​ (2004)
    5.Cartis, C., Gould, N.I.M.: Finding a point in the relative interior of a polyhedron. Tech. Rep. RAL 2006-016, Rutherford Appleton Laboratory (2006)
    6.Castro, J., Cuesta, J.: Existence, uniqueness, and convergence of the regularized primal-dual central path. Oper. Res. Lett. 38(5), 366–371 (2010)CrossRef MathSciNet MATH
    7.Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. SIAM, Philadelphia (2009)CrossRef MATH
    8.DeMiguel, V., Friedlander, M.P., Nogales, F.J., Scholtes, S.: A two-sided relaxation scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 16(2), 587–609 (2005)CrossRef MathSciNet MATH
    9.El-Bakry, A.S., Tapia, R., Zhang, Y.: A study of indicators for identifying zero variables in interior point methods. SIAM Rev. 36(1), 45–72 (1994)CrossRef MathSciNet MATH
    10.Engau, A., Anjos, M.F., Vannelli, A.: Operations Research and Cyber-Infrastructure. A primal-dual slack approach to warmstarting interior-point methods for linear programming, vol. 47, pp. 195–217. Springer, New York (2009)CrossRef
    11.Engau, A., Anjos, M.F., Vannelli, A.: On interior-point warmstarts for linear and combinatorial optimization. SIAM J. Optim. 20(4), 1828–1861 (2010)CrossRef MathSciNet MATH
    12.Facchinei, F., Fischer, A., Kanzow, C.: On the accurate identification of active constraints. SIAM J. Optim. 9(2), 14–32 (1998)CrossRef MathSciNet MATH
    13.Ferris, M., Mangasarian, O., Wright, S.J.: Linear Programming with Matlab. SIAM, Philadelphia (2007)CrossRef
    14.Freund, R.M.: A potential-function reduction algorithm for solving a linear program directly from an infeasible “warm start”. Math. Prog. 52(1–3), 441–466 (1991)CrossRef MATH
    15.Freund, R.M.: Theoretical efficiency of a shifted-barrier-function algorithm for linear programming. Linear Algebra Appl. 152, 19–41 (1991)CrossRef MathSciNet MATH
    16.Freund, R.M.: An infeasible-start algorithm for linear programming whose complexity depends on the distance from the starting point to the optimal solution. Ann. Oper. Res. 62(1), 29–57 (1996)CrossRef MathSciNet MATH
    17.Gill, P.E., Murray, W., Saunders, M.A., Tomlin, J., Wright, M.H.: On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method. Math. Prog. 36(2), 183–209 (1986)CrossRef MathSciNet MATH
    18.Gondzio, J.: Warm start of the primal-dual method applied in the cutting-plane scheme. Math. Prog. 83(1–3), 125–143 (1998)MathSciNet MATH
    19.Gondzio, J.: Interior point methods 25 years later. Eur. J. Oper. Res. 218, 587–601 (2012)CrossRef MathSciNet MATH
    20.Gondzio, J., Grothey, A.: A new unblocking technique to warmstart interior point methods based on sensitivity analysis. SIAM J. Optim. 19(3), 1184–1210 (2008)CrossRef MathSciNet MATH
    21.Gondzio, J., Vial, J.P.: Warm start and \(\epsilon \) -subgradients in a cutting plane scheme for block-angular linear programs. Comput. Optim. Appl. 14(1), 17–36 (1999)CrossRef MathSciNet MATH
    22.Güler, O., den Hertog, D., Roos, C., Terlaky, T., Tsuchiya, T.: Degeneracy in interior point methods for linear programming: a survey. Ann. Oper. Res. 46–47, 107–138 (1993)CrossRef
    23.Karmarkar, N., Ramakrishnan, K.: Computational results of an interior point algorithm for large scale linear programming. Math. Prog. 52(1–3), 555–586 (1991)CrossRef MathSciNet MATH
    24.Mangasarian, O., Ren, J.: New improved error bounds for the linear complementarity problem. Math. Prog. 66(2), 241–255 (1994)CrossRef MathSciNet MATH
    25.McShane, K.A., Monma, C.L., Shanno, D.: An implementation of a primal-dual interior point method for linear programming. ORSA J. Comput. 1(2), 70–83 (1989)CrossRef MATH
    26.Mehrotra, S.: Finite termination and superlinear convergence in primal-dual methods. Tech. Rep. 91-13, Northwestern University (1991)
    27.Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4), 575–601 (1992)CrossRef MathSciNet MATH
    28.Mehrotra, S., Ye, Y.: Finding an interior point in the optimal face of linear programs. Math. Prog. 62(1–3), 497–515 (1993)CrossRef MathSciNet MATH
    29.Mitchell, J.E.: An interior point column generation method for linear programming using shifted barriers. SIAM J. Optim. 4(2), 423–440 (1994)CrossRef MathSciNet MATH
    30.Morales, J.L.: A numerical study of limited memory BFGS methods. Appl. Math. Lett. 15(4), 481–487 (2002)CrossRef MathSciNet MATH
    31.Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Madison (2006)MATH
    32.Oberlin, C., Wright, S.J.: Active set identification in nonlinear programming. SIAM J. Optim. 17(2), 577–605 (2006)CrossRef MathSciNet MATH
    33.Pang, J.S.: Error bounds in mathematical programming. Math. Prog. 79(1), 299–332 (1997)MATH
    34.Polyak, R.: Modified barrier functions (theory and methods). Math. Prog. 54(1–3), 177–222 (1992)CrossRef MathSciNet MATH
    35.Saunders, M., Tomlin, J.: Solving regularized linear programs using barrier methods and KKT systems. Tech. Rep. SOL 96-4, Deptartment of Operations Research, Stanford University (1996)
    36.Sierksma, G.: Linear and Integer Programming: Theory and Practice, 2nd edn. CRC Press, Boca Raton (2001)
    37.Skajaa, A., Andersen, E., Ye, Y.: Warmstarting the homogeneous and self-dual interior point method for linear and conic quadratic problems. Math. Prog. Comput. 5, 1–25 (2013)CrossRef MathSciNet MATH
    38.Tone, K.: An active-set strategy in an interior point method for linear programming. Math. Prog. 59(1–3), 345–360 (1993)CrossRef MathSciNet MATH
    39.Williams, P.J.: Effective finite termination procedures in interior-point methods for linear programming. Ph.D. thesis, Department of Computational and Applied Mathematics, Rice University (1998)
    40.Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)CrossRef MATH
    41.Xu, X., Hung, P.F., Ye, Y.: A simplified homogeneous and self-dual linear programming algorithm and its implementation. Ann. Oper. Res. 62(1), 151–171 (1996)CrossRef MathSciNet MATH
    42.Ye, Y.: On the finite convergence of interior-point algorithms for linear programming. Math. Prog. 57(1), 325–335 (1992)CrossRef MATH
    43.Ye, Y., Todd, M.J., Mizuno, S.: An o(nl)-iteration homogeneous and self-dual linear programming algorithm. Math. Oper. Res. 19(1), 53–67 (1994)CrossRef MathSciNet MATH
    44.Yildirim, E., Wright, S.J.: Warm-start strategies in interior-point methods for linear programming. SIAM J. Optim. 12(3), 782–810 (2002)CrossRef MathSciNet MATH
    45.Zhang, Y.: Solving large-scale linear programs by interior-point methods under the Matlab Environment. Optim. Methods Softw. 10(1), 1–31 (1998)CrossRef MathSciNet MATH
  • 作者单位:Coralia Cartis (1)
    Yiming Yan (2)

    1. Mathematical Institute, Radcliffe Observatory Quarter, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG, UK
    2. School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Optimization
    Operations Research and Mathematical Programming
    Operation Research and Decision Theory
    Statistics
    Convex and Discrete Geometry
  • 出版者:Springer Netherlands
  • ISSN:1573-2894
文摘
We propose the use of controlled perturbations to address the challenging question of optimal active-set prediction for interior point methods. Namely, in the context of linear programming, we consider perturbing the inequality constraints/bounds so as to enlarge the feasible set. We show that if the perturbations are chosen appropriately, the solution of the original problem lies on or close to the central path of the perturbed problem. We also find that a primal-dual path-following algorithm applied to the perturbed problem is able to accurately predict the optimal active set of the original problem when the duality gap for the perturbed problem is not too small; furthermore, depending on problem conditioning, this prediction can happen sooner than predicting the active set for the perturbed problem or when the original one is solved. Encouraging preliminary numerical experience is reported when comparing activity prediction for the perturbed and unperturbed problem formulations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700