用户名: 密码: 验证码:
Synergistic cytotoxicity of low-energy ultrasound and innovative mesoporous silica-based sensitive nanoagents
详细信息    查看全文
  • 作者:Yang Zhao (1)
    Yingchun Zhu (1)
  • 刊名:Journal of Materials Science
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:49
  • 期:10
  • 页码:3665-3673
  • 全文大小:2,849 KB
  • 参考文献:1. Miller MW, Miller DL, Brayman AA (1996) A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol 22:1131-154 CrossRef
    2. Wang X, Chen HR, Zheng YY et al (2013) Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials 34:2057-068 CrossRef
    3. Suslick KS (1990) Sonochemistry. Science 247:1439-445 CrossRef
    4. Riesz P, Kondo T (1992) Free-radical formation induced by ultrasound and its biological implications. Free Radicl Bio Med 13:247-70 CrossRef
    5. Jones SF, Evans GM, Galvin KP (1999) Bubble nucleation from gas cavities—a review. Adv Colloid Interface Sci 80:27-0 CrossRef
    6. Holland CK, Apfel RE (1990) Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment. J Acoust Soc Am 88:2059-069 CrossRef
    7. Man J, Shelton RM, Cooper PR, Landini G, Scheven BA (2012) Low intensity ultrasound stimulates osteoblast migration at different frequencies. J Bone Miner Metab 30:602-07 CrossRef
    8. Wagstaffe SJ, Schiffter HA, Arora M, Coussios CC (2012) Sonosensitive nanoparticles for controlled instigation of cavitation and drug delivery by ultrasound. AIP Conf Proc 1481:426-31 CrossRef
    9. Harle J, Mayia F, Olsen I, Salih V (2005) Effects of ultrasound on transforming growth factor-beta genes in bone cells. Eur Cells Mater 10:70-6
    10. Reher P, Doan N, Bradnock B, Meghji S, Harris M (1999) Effect of ultrasound on the production of IL-8, basic FGF and VEGF. Cytokine 11:416-23 CrossRef
    11. terHaar G (2007) Therapeutic applications of ultrasound. Prog Biophys Mol Biol 93:111-29 CrossRef
    12. Park K, Hoffmeister B, Han DK, Hasty K (2007) Therapeutic ultrasound effects on interleukin-1 beta stimulated cartilage construct in vitro. Ultrasound Med Biol 33:286-95 CrossRef
    13. Pounder NM, Harrison AJ (2008) Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics 48:330-38 CrossRef
    14. Lejbkowicz F, Salzberg S (1997) Distinct sensitivity of normal and malignant cells to ultrasound in vitro. Environ Health Perspect 105:1575-578
    15. Schuster A, Schwab T, Bischof M et al (2013) Cell specific ultrasound effects are dose and frequency dependent. Ann Anat 195:57-7 CrossRef
    16. Wang Y, Bai WK, Shen E, Hu B (2013) Sonoporation by low-frequency and low-power ultrasound enhances chemotherapeutic efficacy in prostate cancer cells in vitro. Oncol Lett 6:495-98
    17. Demos SM, Alkan-Onyuksel H, Kane BJ et al (1999) In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J Am Coll Cardiol 33:867-75 CrossRef
    18. Ward M, Wu JR, Chiu JF (1999) Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents. J Acoust Soc Am 105:2951-957 CrossRef
    19. Feril LB, Kondo T, Zhao QL et al (2003) Enhancement of ultrasound-induced apoptosis and cell lysis by echo-contrast agents. Ultrasound Med Biol 29:331-37 CrossRef
    20. Ju HY, Roy RA, Murray TW (2013) Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy. Biomed Opt Express 4:66-6 CrossRef
    21. Sazgarnia A, Shanei A, Taheri AR et al (2013) Therapeutic effects of acoustic cavitation in the presence of gold nanoparticles on a colon tumor model. J Ultras Med 32:475-83
    22. Zhao Y, Zhu YC, Fu JK, Wang LZ (2013) Effective cancer cell killing by hydrophobic nanovoid-enhanced cavitation under safe low-energy ultrasound. Chem Asian J. doi:10.1002/asia.201301333
    23. de Sousa A, Maria DA, de Sousa RG, de Sousa EMB (2010) Synthesis and characterization of mesoporous silica/poly(N-isopropylacrylamide) functional hybrid useful for drug delivery. J Mater Sci 45:1478-486 CrossRef
    24. Zhu YC, Fujiwara M (2007) Installing dynamic molecular photomechanics in mesopores: a multifunctional controlled-release nanosystem. Angew Chem Int Ed 46:2241-244 CrossRef
    25. Chen F, Zhu YC (2012) Chitosan enclosed mesoporous silica nanoparticles as drug nano-carriers: sensitive response to the narrow pH range. Microporous Mesoporous Mater 150:83-9 CrossRef
    26. Han LB, Zhou Y, He T et al (2013) One-pot morphology-controlled synthesis of various shaped mesoporous silica nanoparticles. J Mater Sci 48:5718-726 CrossRef
    27. Lang Y, Finn DP, Pandit A, Walsh PJ (2012) Pharmacological activity of ibuprofen released from mesoporous silica. J Mater Sci Mater Med 23:73-0 CrossRef
    28. Rosenholm JM, Sahlgren C, Linden M (2010) Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles—opportunities and challenges. Nanoscale 2:1870-883 CrossRef
    29. Tsai CP, Chen CY, Hung Y, Chang FH, Mou CY (2009) Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem 19:5737-743 CrossRef
    30. Ferris DP, Lu J, Gothard C et al (2011) Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small 7:1816-826 CrossRef
    31. Rosenholm J, Sahlgren C, Linden M (2010) Cancer-cell targeting and cell-specific delivery by mesoporous silica nanoparticles. J Mater Chem 20:2707-713 CrossRef
    32. Chen Y, Chu C, Zhou Y et al (2011) Reversible pore-structure evolution in hollow silica nanocapsules: large pores for siRNA delivery and nanoparticle collecting. Small 7:2935-944 CrossRef
    33. Pesse AV, Warrier GR, Dhir VK (2005) An experimental study of the gas entrapment process in closed-end microchannels. Int J Heat Mass Transfer 48:5150-165 CrossRef
    34. Chappell MA, Payne SJ (2007) The effect of cavity geometry on the nucleation of bubbles from cavities. J Acoust Soc Am 121:853-62 CrossRef
    35. Gelderblom H, Zijlstra AG, van Wijngaarden L, Prosperetti A (2012) Oscillations of a gas pocket on a liquid-covered solid surface. Phys Fluids. doi:10.1063/1.4769179
    36. Borkent BM, Gekle S, Prosperetti A, Lohse D (2009) Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys Fluids. doi:10.1063/1.3249602
    37. Mark G, Tauber A, Rudiger LA et al (1998) OH-radical formation by ultrasound in aqueous solution-Part II: terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrason Sonochem 5:41-2 CrossRef
    38. Saran M, Summer KH (1999) Assaying for hydroxyl radicals: hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate. Free Radic Res 31:429-36 CrossRef
    39. Marschall HB, Morch KA, Keller AP, Kjeldsen M (2003) Cavitation inception by almost spherical solid particles in water. Phys Fluids 15:545-53 CrossRef
    40. Feril LB, Kondo T (2004) Biological effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and on biosafety of ultrasound. J Radiat Res 45:479-89 CrossRef
    41. Mitragotri S (2005) Innovation-Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 4:255-60 CrossRef
    42. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504-534 CrossRef
    43. Lu J, Liong M, Li Z, Zink JI, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6:1794-805 CrossRef
    44. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42:1147-235 CrossRef
    45. Kroemer G, Jaattela M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886-97 CrossRef
    46. Chung MF, Chen KJ, Liang HF et al (2012) A liposomal system capable of generating CO2 bubbles to induce transient cavitation, lysosomal rupturing, and cell necrosis. Angew Chem Int Ed 51:10089-0093 CrossRef
  • 作者单位:Yang Zhao (1)
    Yingchun Zhu (1)

    1. Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
  • ISSN:1573-4803
文摘
Low-energy ultrasound (LEUS) shows distinct potential as a safe therapeutic strategy for cancer treatment. Herein, mesoporous silica nanoparticles with closed-end cavities as sensitive nanoagents are prepared for effective cancer cell killing, when synergistically combined with mild LEUS (1?MHz, ?.0?W?cm?). The closed-end cavities can entrap gas bubbles, and provide a large number of cavitation nucleation sites, which could lead to drastically amplify ultrasonic cavitation effect by responding to the mild LEUS (1?MHz, ?.0?W?cm?). Significant killing effect against cancer cells is observed, when cells are treated by synergetic combination of mild LEUS and the nanoagents with closed-end cavities, showing distinct dose dependency on the nanoagents and irradiation intensity. Nevertheless, the killing effect is disappeared when the closed-end cavities are destructed. Moreover, no obvious cytotoxicity is observed when either the nanoagents or the LEUS is applied alone. The research may open up application opportunities of mild low-energy ultrasound for cancer therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700