用户名: 密码: 验证码:
Complete sequence determination of a novel reptile iridovirus isolated from soft-shelled turtle and evolutionary analysis of Iridoviridae
详细信息    查看全文
  • 作者:Youhua Huang (1)
    Xiaohong Huang (2)
    Hong Liu (3)
    Jie Gong (1)
    Zhengliang Ouyang (1)
    Huachun Cui (1)
    Jianhao Cao (1)
    Yingtao Zhao (4)
    Xiujie Wang (4)
    Yulin Jiang (3)
    Qiwei Qin (2)
  • 刊名:BMC Genomics
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:10
  • 期:1
  • 全文大小:1762KB
  • 参考文献:1. Williams T, Barbosa-Solomieu V, Chinchar VG: A decade of advances in iridovirus research. / Adv Virus 2005, 65:173鈥?48. CrossRef
    2. Chinchar VG, Essbauer S, He JG, Hyatt A, Miyazaki T, Seligy D, Williams T: Iridoviridae. / Virus Taxonomy, VIIIth Report of the International Committee on Taxonomy of Viruses / (Edited by: Fauqet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA). Academic Press, London 2005, 163鈥?75.
    3. Delius H, Darai G, Fl眉gel RM: DNA Analysis of insect Iridescent virus 6: evidence for circular permutation and terminal redundancy. / J Virol 1984, 49:609鈥?14.
    4. Goorha R, Murti KG: The genome of frog virus 3, an animal DNA virus, is circularly permuted and terminally redundant. / Proc Natl Acad Sci USA 1982, 79:248鈥?52. CrossRef
    5. Eaton HE, Metcalf J, Penny E, Tcherepanov V, Upton C, Brunetti CR: Comparative genomic analysis of the family Iridoviridae: re-annotating and defining the core set of iridovirus genes. / Virol J 2007, 4:11. CrossRef
    6. Kurita J, Nakajima K, Hirono I, Aoki T: Complete genome sequencing of red sea bream Iridovirus (RSIV). / Fisheries Sci 2002, 68:1113鈥?115. CrossRef
    7. Chen ZX, Zheng JC, Jiang YL: A new iridovirus isolated from soft-shelled turtle. / Virus Res 1999, 63:147鈥?51. CrossRef
    8. Johnson AJ, Pessier AP, Wellehan JF, Childress A, Norton TM, Stedman NL, Bloom DC, Belzer W, Titus VR, Wagner R, Brooks JW, Spratt J, Jacobson ER: Ranavirus infection of free-ranging and captive box turtles and tortoises in the United States. / J Wildl Dis 2008, 44:851鈥?63.
    9. Allender MC, Fry MM, Irizarry AR, Craig L, Johnson AJ, Jones M: Intracytoplasmic inclusions in circulating leukocytes from an eastern box turtle (Terrapene carolina carolina) with iridoviral infection. / J Wildl Dis 2006, 42:677鈥?84.
    10. Marschang RE, Becher P, Posthaus H, Wild P, Thiel HJ, M眉ller-Doblies U, Kalet EF, Bacciarini LN: Isolation and characterization of an iridovirus from Hermann's tortoises (Testudo hermanni). / Arch Virol 1999, 144:1909鈥?922. CrossRef
    11. Mao J, Hedrick RP, Chinchar VG: Molecular characterization, sequence analysis and taxonomic position of newly isolated fish iridoviruses. / Virology 1997, 229:212鈥?20. CrossRef
    12. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM: Genome sequencing in microfabricated high-density picolitre reactors. / Nature 2005, 437:376鈥?80.
    13. Tan WG, Barkman TJ, Gregory Chinchar V, Essani K: Comparative genomic analyses of frog virus 3, type species of the genus Ranavirus (family Iridoviridae). / Virology 2004, 323:70鈥?4. CrossRef
    14. Iyer LM, Balaji S, Koonin EV, Aravind L: Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. / Virus Res 2006, 117:156鈥?84. CrossRef
    15. Cox R, Mirkin SM: Characteristic enrichment of DNA repeats in different genomes. / Proc Natl Acad Sci USA 1997, 94:5237鈥?242. CrossRef
    16. Klupp BG, Hengartner CJ, Mettenleiter TC, Enquist LW: Complete, annotated sequence of the pseudorabies virus genome. / J Virol 2004, 78:424鈥?40. CrossRef
    17. Delhon G, Moraes MP, Lu Z, Afonso CL, Flores EF, Weiblen R, Kutish GF, Rock DL: Genome of bovine herpesvirus 5. / J Virol 2003, 77:10339鈥?0347. CrossRef
    18. Kashi Y, King DG: Simple sequence repeats as advantageous mutators in evolution. / Trends Genet 2006, 22:253鈥?59. CrossRef
    19. Hogg M, Aller P, Konigsberg W, Wallace SS, Doubli茅 S: Structural and biochemical investigation of the role in proofreading of a beta hairpin loop found in the exonuclease domain of a replicative DNA polymerase of the B family. / J Biol Chem 2007, 282:1432鈥?444. CrossRef
    20. Hamilton MD, Evans DH: Enzymatic processing of replication and recombination intermediates by the vaccinia virus DNA polymerase. / Nucleic Acids Res 2005, 33:2259鈥?268. CrossRef
    21. Willer DO, Yao XD, Mann MJ, Evans DH: In vitro concatemer formation catalyzed by vaccinia virus DNA polymerase. / Virology 2000, 278:562鈥?69. CrossRef
    22. Nash K, Chen W, McDonald WF, Zhou X, Muzyczka N: Purification of host cell enzymes involved in adeno-associated virus DNA replication. / J Virol 2007, 81:5777鈥?787. CrossRef
    23. O'Reilly DR, Crawford AM, Miller LK: Viral proliferating cell nuclear antigen. / Nature 1989, 337:606. CrossRef
    24. Iyer LM, Koonin EV, Leipe DD, Aravind L: Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. / Nucleic Acids Res 2005, 33:3875鈥?896. CrossRef
    25. Evans E, Klemperer N, Ghosh R, Traktman P: The vaccinia virus D5 protein, which is required for DNA replication, is a nucleic acid-independent nucleoside triphosphatase. / J Virol 1995, 69:5353鈥?361.
    26. De Silva FS, Lewis W, Berglund P, Koonin EV, Moss B: Poxvirus DNA primase. / Proc Natl Acad Sci USA 2007, 104:18724鈥?8729. CrossRef
    27. Everly DN Jr, Read GS: Mutational analysis of the virion host shutoff gene (UL41) of herpes simplex virus (HSV): characterization of HSV type 1 (HSV鈥?)/HSV鈥? chimeras. / J Virol 1997, 71:7157鈥?166.
    28. Jones EV, Puckett C, Moss B: DNA-dependent RNA polymerase subunits encoded within the vaccinia virus genome. / J Virol 1987, 61:1765鈥?771.
    29. Y谩帽ez RJ, Boursnell M, Nogal ML, Yuste L, Vi帽uela E: African swine fever virus encodes two genes which share significant homology with the two largest subunits of DNA-dependent RNA polymerases. / Nucleic Acids Res 1993, 21:2423鈥?427. CrossRef
    30. Kim B, Nesvizhskii AI, Rani PG, Hahn S, Aebersold R, Ranish JA: The transcription elongation factor TFIIS is a component of RNA polymerase II preinitiation complexes. / Proc Natl Acad Sci USA 2007, 104:16068鈥?1603. CrossRef
    31. Ito T, Arimitsu N, Takeuchi M, Kawamura N, Nagata M, Saso K, Akimitsu N, Hamamoto H, Natori S, Miyajima A, Sekimizu K: Transcription elongation factor S-II is required for definitive hematopoiesis. / Mol Cell Biol 2006, 26:3194鈥?203. CrossRef
    32. Black EP, Condit RC: Phenotypic characterization of mutants in vaccinia virus gene G2R, a putative transcription elongation factor. / J Virol 1996, 70:47鈥?4.
    33. Lembo D, Donalisio M, Hofer A, Cornaglia M, Brune W, Koszinowski U, Thelander L, Landolfo S: The ribonucleotide reductase R1 homolog of murine cytomegalovirus is not a functional enzyme subunit but is required for pathogenesis. / J Virol 2004, 78:4278鈥?288. CrossRef
    34. Langelier Y, Bergeron S, Chabaud S, Lippens J, Guilbault C, Sasseville AM, Denis S, Mosser DD, Massie B: The R1 subunit of herpes simplex virus ribonucleotide reductase protects cells against apoptosis at, or upstream of, caspase鈥? activation. / J Gen Virol 2002, 83:2779鈥?789.
    35. T贸th J, Varga B, Kov谩cs M, M谩ln谩si-Csizmadia A, V茅rtessy BG: Kinetic mechanism of human dUTPase, an essential nucleotide pyrophosphatase enzyme. / J Biol Chem 2007, 282:33572鈥?3582. CrossRef
    36. Oliveros M, Garc铆a-Escudero R, Alejo A, Vi帽uela E, Salas ML, Salas J: African swine fever virus dUTPase is a highly specific enzyme required for efficient replication in swine macrophages. / J Virol 1999, 73:8934鈥?943.
    37. Glaser R, Litsky ML, Padgett DA, Baiocchi RA, Yang EV, Chen M, Yeh PE, Green-Church KB, Caligiuri MA, Williams MV: EBV-encoded dUTPase induces immune dysregulation: Implications for the pathophysiology of EBV-associated disease. / Virology 2006, 346:205鈥?18. CrossRef
    38. Drider D, Condon C: The continuing story of endoribonuclease III. / J Mol Microbiol Biotechnol 2004, 8:195鈥?00. CrossRef
    39. Ravanello MP, Hruby DE: Conditional lethal expression of the vaccinia virus L1R myristylated protein reveals a role in virion assembly. / J Virol 1994, 68:6401鈥?410.
    40. Reading PC, Moore JB, Smith GL: Steroid hormone synthesis by vaccinia virus suppresses the inflammatory response to infection. / J Exp Med 2003, 197:1269鈥?278. CrossRef
    41. Huang X, Huang Y, Gong J, Yan Y, Qin Q: Identification and characterization of a putative lipopolysaccharide-induced TNF-alpha factor (LITAF) homolog from Singapore grouper iridovirus. / Biochem Biophys Res Commun 2008, 373:140鈥?45. CrossRef
    42. Park EM, Kim YO, Nam BH, Kong HJ, Kim WJ, Lee SJ, Kong IS, Choi TJ: Cloning, characterization and expression analysis of the gene for a putative lipopolysaccharide-induced TNF-alpha factor of the Pacific oyster, Crassostrea gigas. / Fish Shellfish Immunol 2008, 24:11鈥?7. CrossRef
    43. Cuconati A, White E: Viral homologs of BCL鈥?: role of apoptosis in the regulation of virus infection. / Genes Dev 2002, 16:2465鈥?478. CrossRef
    44. Chinchar VG, Bryan L, Wang J, Long S, Chinchar GD: Induction of apoptosis in frog virus 3-infected cells. / Virology 2003, 306:303鈥?12. CrossRef
    45. Huang YH, Huang XH, Gui JF, Zhang QY: Mitochondrion-mediated apoptosis induced by Rana grylio virus infection in fish cells. / Apoptosis 2007, 12:1569鈥?577. CrossRef
    46. Grey F, Antoniewicz A, Allen E, Saugstad J, McShea A, Carrington JC, Nelson J: Identification and characterization of human cytomegalovirus-encoded microRNAs. / J Virol 2005, 79:12095鈥?2099. CrossRef
    47. Cui C, Griffiths A, Li G, Silva LM, Kramer MF, Gaasterland T, Wang XJ, Coen DM: Prediction and identification of herpes simplex virus 1-encoded microRNAs. / J Virol 2006, 80:5499鈥?508. CrossRef
    48. Cullen BR: Immunology. Outwitted by viral RNAs. / Science 2007, 317:329鈥?30. CrossRef
    49. Nair V, Zavolan M: Virus-encoded microRNAs: novel regulators of gene expression. / Trends Microbiol 2006, 14:169鈥?75. CrossRef
    50. Picco AM, Collins JP: Amphibian Commerce as a Likely Source of Pathogen Pollution. / Conserv Biol 2008, 22:1582鈥?589. CrossRef
    51. McLysaght A, Baldi PF, Gaut BS: Extensive gene gain associated with adaptive evolution of poxviruses. / Proc Natl Acad Sci USA 2003, 100:15655鈥?5660. CrossRef
    52. Bubi忙 I, Wagner M, Krmpoti忙 A, Saulig T, Kim S, Yokoyama WM, Jonji忙 S, Koszinowski UH: Gain of virulence caused by loss of a gene in murine cytomegalovirus. / J Virol 2004, 78:7536鈥?544. CrossRef
    53. Zhang QY, Xiao F, Xie J, Li ZQ, Gui JF: Complete genome sequence of lymphocystis disease virus isolated from China. / J Virol 2004, 78:6982鈥?994. CrossRef
    54. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R: REPuter: the manifold applications of repeat analysis on a genomic scale. / Nucleic Acids Res 2001, 29:4633鈥?642. CrossRef
    55. Katoh K, Kuma K, Miyata T, Toh H: Improvement in the accuracy of multiple sequence alignment program MAFFT. / Genome Inform 2005, 16:22鈥?3.
    56. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. / Bioinformatics 2007, 23:2947鈥?948. CrossRef
    57. Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. / Mol Biol Evol 2007, 24:1586鈥?591. CrossRef
  • 作者单位:Youhua Huang (1)
    Xiaohong Huang (2)
    Hong Liu (3)
    Jie Gong (1)
    Zhengliang Ouyang (1)
    Huachun Cui (1)
    Jianhao Cao (1)
    Yingtao Zhao (4)
    Xiujie Wang (4)
    Yulin Jiang (3)
    Qiwei Qin (2)

    1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou, 510275, PR China
    2. Laboratory of Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, PR China
    3. Shenzhen Exit & Entry Inspection and Quarantine Bureau, Shenzhen, 518001, PR China
    4. State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
文摘
Background Soft-shelled turtle iridovirus (STIV) is the causative agent of severe systemic diseases in cultured soft-shelled turtles (Trionyx sinensis). To our knowledge, the only molecular information available on STIV mainly concerns the highly conserved STIV major capsid protein. The complete sequence of the STIV genome is not yet available. Therefore, determining the genome sequence of STIV and providing a detailed bioinformatic analysis of its genome content and evolution status will facilitate further understanding of the taxonomic elements of STIV and the molecular mechanisms of reptile iridovirus pathogenesis. Results We determined the complete nucleotide sequence of the STIV genome using 454 Life Science sequencing technology. The STIV genome is 105 890 bp in length with a base composition of 55.1% G+C. Computer assisted analysis revealed that the STIV genome contains 105 potential open reading frames (ORFs), which encode polypeptides ranging from 40 to 1,294 amino acids and 20 microRNA candidates. Among the putative proteins, 20 share homology with the ancestral proteins of the nuclear and cytoplasmic large DNA viruses (NCLDVs). Comparative genomic analysis showed that STIV has the highest degree of sequence conservation and a colinear arrangement of genes with frog virus 3 (FV3), followed by Tiger frog virus (TFV), Ambystoma tigrinum virus (ATV), Singapore grouper iridovirus (SGIV), Grouper iridovirus (GIV) and other iridovirus isolates. Phylogenetic analysis based on conserved core genes and complete genome sequence of STIV with other virus genomes was performed. Moreover, analysis of the gene gain-and-loss events in the family Iridoviridae suggested that the genes encoded by iridoviruses have evolved for favoring adaptation to different natural host species. Conclusion This study has provided the complete genome sequence of STIV. Phylogenetic analysis suggested that STIV and FV3 are strains of the same viral species belonging to the Ranavirus genus in the Iridoviridae family. Given virus-host co-evolution and the phylogenetic relationship among vertebrates from fish to reptiles, we propose that iridovirus might transmit between reptiles and amphibians and that STIV and FV3 are strains of the same viral species in the Ranavirus genus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700