用户名: 密码: 验证码:
Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis
详细信息    查看全文
  • 作者:Yong-Bo Duan ; Juan Li ; Rui-Ying Qin ; Rong-Fang Xu ; Hao Li…
  • 关键词:Salt response ; RAV ; GT ; 1element ; Rice ; CRISPR/Cas9
  • 刊名:Plant Molecular Biology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:90
  • 期:1-2
  • 页码:49-62
  • 全文大小:2,740 KB
  • 参考文献:Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543. doi:10.​1093/​jxb/​ers100 PubMed CrossRef
    Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84. doi:10.​1016/​j.​copbio.​2014.​11.​007 PubMed CrossRef
    Benfey PN, Chua N-H (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966. doi:10.​1126/​science.​250.​4983.​959 PubMed CrossRef
    Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C-M, van Lammeren AAM, Miki BLA, Custers JBM, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749. doi:10.​1105/​tpc.​001941 PubMed PubMedCentral CrossRef
    Chen M, Wang Q-Y, Cheng X-G, Xu Z-S, Li L-C, Ye X-G, Xia L-Q, Ma Y-Z (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305. doi:10.​1016/​j.​bbrc.​2006.​12.​027 PubMed CrossRef
    Duan Y, Zhai C, Li H, Li J, Mei W, Gui H, Ni D, Song F, Li L, Zhang W, Yang J (2012) An efficient and high-throughput protocol for agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.). Plant Cell Rep 31:1611–1624. doi:10.​1007/​s00299-012-1275-3 PubMed CrossRef
    Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763. doi:10.​1046/​j.​1365-313X.​2003.​01661.​x PubMed CrossRef
    Fang Y, Xie K, Hou X, Hu H, Xiong L (2010) Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Mol Genet Genomi 283:157–169. doi:10.​1007/​s00438-009-0507-x CrossRef
    Feng C-Z, Chen Y, Wang C, Kong Y-H, Wu W-H, Chen Y-F (2014) Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. Plant J 80:654–668. doi:10.​1111/​tpj.​12670 PubMed CrossRef
    Fu M, Kang HK, Son S-H, Kim S-K, Nam KH (2014) A Subset of RAV transcription factors modulates drought and salt stress responses aba-independently in Arabidopsis. Plant Cell Physiol. doi:10.​1093/​pcp/​pcu118 PubMed
    Gao J-P, Chao D-Y, Lin H-X (2007) Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integr Plant Biol 49:742–750. doi:10.​1111/​j.​1744-7909.​2007.​00495.​x CrossRef
    Gao S, Zhang H, Tian Y, Li F, Zhang Z, Lu X, Chen X, Huang R (2008) Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Plant Cell Rep 27:1787–1795. doi:10.​1007/​s00299-008-0602-1 PubMed CrossRef
    Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–1391. doi:10.​1007/​s00299-011-1068-0 PubMed CrossRef
    Goyal E, Singh RS, Kanika K (2013) Isolation and functional characterization of salt overly sensitive 1 (SOS1) gene promoter from Salicornia brachiata. Biol Plant 57:465–473. doi:10.​1007/​s10535-013-0309-1 CrossRef
    Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499. doi:10.​1146/​annurev.​arplant.​51.​1.​463 CrossRef
    Higo K, Ugawa Y, Iwamoto M, Higo H (1998) PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res 26:358–359PubMed PubMedCentral CrossRef
    http://​www.​nature.​com/​articles/​srep11491#supplementary-information
    http://​www.​nature.​com/​nbt/​journal/​v30/​n5/​abs/​nbt.​2199.​html#supplementary-information
    Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901PubMed PubMedCentral
    Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108CrossRef
    Kaplan-Levy RN, Brewer PB, Quon T, Smyth DR (2012) The trihelix family of transcription factors—light, stress and development. Trends Plant Sci 17:163–171. doi:10.​1016/​j.​tplants.​2011.​12.​002 PubMed CrossRef
    Kim S-Y, Kim Y-C, Lee J-H, Oh S-K, Chung E, Lee S, Lee Y-H, Choi D, Park JM (2005) Identification of a CaRAV1 possessing an AP2/ERF and B3 DNA-binding domain from pepper leaves infected with Xanthomonas axonopodis pv. glycines 8ra by differential display. Biochim Biophys Gene Struct Expr 1729:141–146. doi:10.​1016/​j.​bbaexp.​2005.​04.​009 CrossRef
    Kumar V, Jain M (2015) The CRISPR–Cas system for plant genome editing: advances and opportunities. J Exp Bot. doi:10.​1093/​jxb/​eru429
    Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748. doi:10.​1093/​jxb/​err210 PubMed CrossRef
    Lee S, Choi D, Hwang I, Hwang B (2010) The pepper oxidoreductase CaOXR1 interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance. Plant Mol Biol 73:409–424. doi:10.​1007/​s11103-010-9629-0 PubMed CrossRef
    Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327PubMed PubMedCentral CrossRef
    Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechol 30:390–392. doi:10.​1038/​nbt.​2199 CrossRef
    Li X-J, Li M, Zhou Y, Hu S, Hu R, Chen Y, Li X-B (2015) Overexpression of Cotton RAV1 Gene in Arabidopsis confers transgenic plants high salinity and drought sensitivity. PLoS One 10:e0118056. doi:10.​1371/​journal.​pone.​0118056 PubMed PubMedCentral CrossRef
    Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406. doi:10.​1105/​tpc.​10.​8.​1391 PubMed PubMedCentral CrossRef
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. doi:10.​1006/​meth.​2001.​1262 PubMed CrossRef
    Matías-Hernández L, Aguilar-Jaramillo AE, Marín-González E, Suárez-López P, Pelaz S (2014) RAV genes: regulation of floral induction and beyond. Ann Bot. doi:10.​1093/​aob/​mcu069 PubMed PubMedCentral
    McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2(2):163–171PubMed PubMedCentral CrossRef
    Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta (BBA) Gene Regul Mech 1819:86–96. doi:10.​1016/​j.​bbagrm.​2011.​08.​004 CrossRef
    Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663. doi:10.​1111/​j.​1469-8137.​2005.​01487.​x PubMed CrossRef
    Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681. doi:10.​1146/​annurev.​arplant.​59.​032607.​092911 CrossRef
    Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and Rice. Plant Physiology 140:411–432. doi:10.​1104/​pp.​105.​073783 PubMed PubMedCentral CrossRef
    Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee S-H, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 Box that interacts with a GT-1-Like transcription factor. Plant Physiol 135:2150–2161. doi:10.​1104/​pp.​104.​041442 PubMed PubMedCentral CrossRef
    Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12:468–479. doi:10.​1111/​pbi.​12153 PubMed CrossRef
    Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009. doi:10.​1006/​bbrc.​2001.​6299 PubMed CrossRef
    Schmidt R, Mieulet D, Hubberten H-M, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JHM, Mueller-Roeber B (2013) Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131. doi:10.​1105/​tpc.​113.​113068 PubMed PubMedCentral CrossRef
    Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi I-R, Omura T, Kikuchi S (2011) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol 52:344–360. doi:10.​1093/​pcp/​pcq196 PubMed CrossRef
    Sohn K, Lee S, Jung H, Hong J, Hwang B (2006) Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol 61:897–915. doi:10.​1007/​s11103-006-0057-0 PubMed CrossRef
    Swaminathan K, Peterson K, Jack T (2008) The plant B3 superfamily. Trends Plant Sci 13:647–655PubMed CrossRef
    Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527. doi:10.​1093/​aob/​mcg058 PubMed PubMedCentral CrossRef
    Wang X-H, Li Q-T, Chen H-W, Zhang W-K, Ma B, Chen S-Y, Zhang J-S (2014) Trihelix transcription factor GT-4 mediates salt tolerance via interaction with TEM2 in Arabidopsis. BMC Plant Biol. doi:10.​1186/​s12870-014-0339-7
    Woo HR, Kim JH, Kim J, Kim J, Lee U, Song I-J, Kim J-H, Lee H-Y, Nam HG, Lim PO (2010) The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. J Exp Bot 61:3947–3957. doi:10.​1093/​jxb/​erq206 PubMed PubMedCentral CrossRef
    Xi J, Qiu Y, Du L, Poovaiah BW (2012) Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Sci 185:274–280. doi:10.​1016/​j.​plantsci.​2011.​11.​013 PubMed CrossRef
    Xie Z-M, Zou H-F, Lei G, Wei W, Zhou Q-Y, Niu C-F, Liao Y, Tian A-G, Ma B, Zhang W-K, Zhang J-S, Chen S-Y (2009) Soybean trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PLoS One 4:e6898. doi:10.​1371/​journal.​pone.​0006898 PubMed PubMedCentral CrossRef
    Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Chen QJ (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14(1):327PubMed PubMedCentral CrossRef
    Xu Z-S, Chen M, Li L-C, Ma Y-Z (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53:570–585. doi:10.​1111/​j.​1744-7909.​2011.​01062.​x PubMed CrossRef
    Xu R-F, Li H, Qin R-Y, Li J, Qiu C-H, Yang Y-C, Ma H, Li L, Wei P-C, Yang J-B (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep. doi:10.​1038/​srep11491
    Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2004) Solution structure of the B3 DNA binding domain of the Arabidopsis cold-responsive transcription factor RAV1. Plant Cell 16:3448–3459. doi:10.​1105/​tpc.​104.​026112 PubMed PubMedCentral CrossRef
    Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. The Plant Journal 22:543–551PubMed CrossRef
    Yang L, Ding J, Zhang C, Jia J, Weng H, Liu W, Zhang D (2005) Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep 23:759–763. doi:10.​1007/​s00299-004-0881-0 PubMed CrossRef
    Yang H, Yu C, Yan J, Wang X, Chen F, Zhao Y, Wei W (2014) Overexpression of the Jatropha curcas JcERF1 gene coding an AP2/ERF-Type transcription factor increases tolerance to salt in transgenic tobacco. Biochem Mosc 79:1226–1236. doi:10.​1134/​s000629791411010​8 CrossRef
    Zhang G, Chen M, Chen X, Xu Z, Guan S, Li L-C, Li A, Guo J, Mao L, Ma Y (2008) Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot 59:4095–4107. doi:10.​1093/​jxb/​ern248 PubMed PubMedCentral CrossRef
    Zhang L, Li Z, Quan R, Li G, Wang R, Huang R (2011) An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. Plant Physiol 157:854–865. doi:10.​1104/​pp.​111.​179028 PubMed PubMedCentral CrossRef
    Zhang Z, Wang J, Zhang R, Huang R (2012) The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J 71:273–287. doi:10.​1111/​j.​1365-313X.​2012.​04996.​x PubMed CrossRef
    Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu J-K (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807. doi:10.​1111/​pbi.​12200 PubMed CrossRef
    Zhou D-X (1999) Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci 4:210–214. doi:10.​1016/​S1360-1385(99)01418-1 PubMed CrossRef
    Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.​1146/​annurev.​arplant.​53.​091401.​143329 PubMed PubMedCentral CrossRef
    Zhuang J, Cai B, Peng R-H, Zhu B, Jin X-F, Xue Y, Gao F, Fu X-Y, Tian Y-S, Zhao W, Qiao Y-S, Zhang Z, Xiong A-S, Yao Q-H (2008) Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochem Biophys Res Commun 371:468–474. doi:10.​1016/​j.​bbrc.​2008.​04.​087 PubMed CrossRef
    Zhuang J, Sun C-C, Zhou X-R, Xiong A-S, Zhang J (2011) Isolation and characterization of an AP2/ERF-RAV transcription factor BnaRAV-1-HY15 in Brassica napus L. HuYou15. Mol Biol Rep 38:3921–3928. doi:10.​1007/​s11033-010-0508-1 PubMed CrossRef
    Zhuang J, Jiang H-H, Wang F, Peng R-H, Yao Q-H, Xiong A-S (2013) A rice OsAP23, functioning as an AP2/ERF transcription factor, reduces salt tolerance in transgenic Arabidopsis. Plant Mol Biol Rep 31:1336–1345. doi:10.​1007/​s11105-013-0610-3 CrossRef
  • 作者单位:Yong-Bo Duan (1) (2)
    Juan Li (1)
    Rui-Ying Qin (1)
    Rong-Fang Xu (1)
    Hao Li (1)
    Ya-Chun Yang (1)
    Hui Ma (1)
    Li Li (1)
    Peng-Cheng Wei (1)
    Jian-Bo Yang (1)

    1. Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
    2. Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Biochemistry
    Plant Pathology
  • 出版者:Springer Netherlands
  • ISSN:1573-5028
文摘
Salt is a major environmental stress factor that can affect rice growth and yields. Recent studies suggested that members of the AP2/ERF domain-containing RAV (related to ABI3/VP1) TF family are involved in abiotic stress adaptation. However, the transcriptional response of rice RAV genes (OsRAVs) to salt has not yet been fully characterized. In this study, the expression patterns of all five OsRAVs were examined under salt stress. Only one gene, OsRAV2, was stably induced by high-salinity treatment. Further expression profile analyses indicated that OsRAV2 is transcriptionally regulated by salt, but not KCl, osmotic stress, cold or ABA (abscisic acid) treatment. To elucidate the regulatory mechanism of the stress response at the transcriptional level, we isolated and characterized the promoter region of OsRAV2 (P OsRAV2 ). Transgenic analysis indicated that P OsRAV2 is induced by salt stress but not osmotic stress or ABA treatment. Serial 5′ deletions and site-specific mutations in P OsRAV2 revealed that a GT-1 element located at position −664 relative to the putative translation start site is essential for the salt induction of P OsRAV2 . The regulatory function of the GT-1 element in the salt induction of OsRAV2 was verified in situ in plants with targeted mutations generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system. Taken together, our results indicate that the GT-1 element directly controls the salt response of OsRAV2. This study provides a better understanding of the putative functions of OsRAVs and the molecular regulatory mechanisms of plant genes under salt stress.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700