用户名: 密码: 验证码:
Markedly improving asymmetric oxidation of 1-(4-methoxyphenyl) ethanol with Acetobacter sp. CCTCC M209061 cells by adding deep eutectic solvent in a two-phase system
详细信息    查看全文
  • 作者:Ping Wei ; Jing Liang ; Jing Cheng ; Min-Hua Zong ; Wen-Yong Lou
  • 关键词:Asymmetric oxidation ; Immobilized Acetobacter sp. CCTCC M209061 cells ; MOPE ; Biphasic system ; DES
  • 刊名:Microbial Cell Factories
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:15
  • 期:1
  • 全文大小:1,296 KB
  • 参考文献:1.Zilbeyaz K, Kurbanoglu EB. Production of (R)-1-(4
    omo-phenyl)-ethanol by locally isolated Aspergillus niger using ram horn peptone. Bioresour Technol. 2008;99:1549–52.CrossRef
    2.Goldberg K, Schroer K, Lutz S, Liese A. Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part II: whole-cell reductions. Appl Microbiol Biot. 2007;76:249–55.CrossRef
    3.Hillier MC, Marcoux JF, Zhao DL, Grabowski EJJ, McKeown AE, Tillyer RD. Stereoselective formation of carbon-carbon bonds via S(N)2-displacement: synthesis of substituted cycloalkyl b indoles. J Org Chem. 2005;70:8385–94.CrossRef
    4.Hillier MC, Desrosiers JN, Marcoux JF, Grabowski EJJ. Stereoselective carbon-carbon bond formation via the mitsunobu displacement of chiral secondary benzylic alcohols. Org Lett. 2004;6:573–6.CrossRef
    5.Lou WY, Wang W, Smith TJ, Zong M-H. Biocatalytic anti-Prelog stereoselective reduction of 4′-methoxyacetophenone to (R)-1-(4-methoxyphenyl)ethanol with immobilized Trigonopsis variabilis AS2.1611 cells using an ionic liquid-containing medium. Green Chem. 2009;11:1377–84.CrossRef
    6.Zong MH, Wang W, Lou WY. Efficient asymmetric reduction of 4′-methoxyacetophenone catalyzed by immobilized Trigonopsis variabilis cells using ionic liquid-containing systems. J Biotechnol. 2008;136:S379.CrossRef
    7.Wang W, Zong MH, Lou WY. Use of an ionic liquid to improve asymmetric reduction of 4′-methoxyacetophenone catalyzed by immobilized Rhodotorula sp. AS2.2241 cells. J Mol Catal B Enzym. 2009;56:70–6.
    8.Lou WY, Wang W, Li RF, Zong M-H. Efficient enantioselective reduction of 4′-methoxyacetophenone with immobilized Rhodotorula sp. AS2.2241 cells in a hydrophilic ionic liquid-containing co-solvent system. J Biotechnol. 2009;143:190–7.CrossRef
    9.Cheng J, Lou WY, Zong MH. Biocatalytic asymmetric oxidation of racemic 1-(4-Methoxyphenyl) ethanol using immobilized Acetobacter sp. CCTCC M209061 cells in organic solvent-containing biphasic system. Chem J Chin U. 2014;35:1529–35.
    10.Xiao ZJ, Zong MH, Lou WY. Highly enantioselective reduction of 4-(trimethylsilyl)-3-butyn-2-one to enantiopure (R)-4-(trimethylsilyl)-3-butyn-2-ol using a novel strain Acetobacter sp. CCTCC M209061. Bioresour Technol. 2009;100:5560–5.CrossRef
    11.Hussain W, Pollard DJ, Lye GJ. The bioreduction of a beta-tetralone to its corresponding alcohol by the yeast Trichosporon capitatum MY1890 and bacterium Rhodococcus erythropolis MA7213 in a range of ionic liquids. Biocatal Biotransfor. 2007;25:443–52.CrossRef
    12.Braeutigam S, Dennewald D, Schuermann M, Lutje-Spelberg J, Pitner WR, Weuster-Botz D. Whole-cell biocatalysis: evaluation of new hydrophobic ionic liquids for efficient asymmetric reduction of prochiral ketones. Enzyme Microbial Technol. 2009;45:310–6.CrossRef
    13.Wang XT, Chen XH, Xu Y, Lou WY, Wu H, Zong MH. Biocatalytic anti-Prelog stereoselective reduction of ethyl acetoacetate catalyzed by whole cells of Acetobacter sp. CCTCC M209061. J Biotechnol. 2013;163:292–300.CrossRef
    14.Wang XT, Yue DM, Zong MH, Lou WY. Use of ionic liquid to significantly improve asymmetric reduction of ethyl acetoacetate catalyzed by Acetobacter sp. CCTCC M209061 Cells. Ind Eng Chem Res. 2013;52:12550–8.CrossRef
    15.He JY, Sun ZH, Ruan WQ, Xu Y. Biocatalytic synthesis of ethyl (S)-4-chloro-3-hydroxy-butanoate in an aqueous-organic solvent biphasic system using Aureobasidium pullulans CGMCC 1244. Process Biochem. 2006;41:244–9.CrossRef
    16.Xu P, Zheng GW, Du PX, Zong MH, Lou WY. Whole-cell biocatalytic processes with ionic liquids. ACS Sustain Chem Eng. 2015. doi:10.​1021/​acssuschemeng.​5b00965 .
    17.Abo-Hamad A, Hayyan M, AlSaadi MA, Hashim MA. Potential applications of deep eutectic solvents in nanotechnology. Chem Eng J. 2015;273:551–67.CrossRef
    18.Zhao H. DNA stability in ionic liquids and deep eutectic solvents. J Chem Technol Biot. 2015;90:19–25.CrossRef
    19.Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev. 2014;114:11060–82.CrossRef
    20.Zhang Q, Vigier KDO, Royer S, Jerome F. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev. 2012;41:7108–46.CrossRef
    21.Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM. Using deep eutectic solvents based on methyl triphenyl phosphunium bromide for the removal of glycerol from palm-oil-based biodiesel. Energ Fuel. 2011;25:2671–8.CrossRef
    22.Gorke JT, Srienc F, Kazlauskas RJ. Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem Commun. 2008:1235–7.
    23.Huang ZL, Wu BP, Wen Q, Yang TX, Yang Z. Deep eutectic solvents can be viable enzyme activators and stabilizers. J Chem Technol Biot. 2014;89:1975–81.CrossRef
    24.Durand E, Lecomte J, Barea B, Piombo G, Dubreucq E, Villeneuve P. Evaluation of deep eutectic solvents as new media for Candida antarctica B lipase catalyzed reactions. Process Biochem. 2012;47:2081–9.CrossRef
    25.Mueller CR, Lavandera I, Gotor-Fernandez V, Dominguez de Maria P. Performance of recombinant-whole-cell-catalyzed reductions in deep-eutectic-solvent-aqueous-media mixtures. Chemcatchem. 2015;7:2654–9.
    26.Xu P, Cheng J, Lou WY, Zong MH. Using deep eutectic solvents to improve the resolution of racemic 1-(4-methoxyphenyl)ethanol through Acetobacter sp. CCTCC M209061 cell-mediated asymmetric oxidation. Rsc Adv. 2015;5:6357–64.CrossRef
    27.Coronel C, Arce G, Iglesias C, Noguera CM, Bonnecarrere PR, Giordano SR, Gonzalez D. Chemoenzymatic synthesis of fluoxetine precursors. Reduction of beta-substituted propiophenones. J Mol Catal B Enzym. 2014;102:94–8.
    28.Yu CY, Wei P, Li XF, Zong MH, Lou WY. Using ionic liquid in a biphasic system to improve asymmetric hydrolysis of styrene oxide catalyzed by cross-linked enzyme aggregates (CLEAs) of mung bean epoxide hydrolases. Ind Eng Chem Res. 2014;53:7923–30.CrossRef
    29.Lou WY, Chen L, Zhang BB, Smith TJ, Zong MH. Using a water-immiscible ionic liquid to improve asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one catalyzed by immobilized Candida parapsilosis CCTCC M203011 cells. BMC Biotechnol. 2009;9:90–102.CrossRef
    30.Chen WJ, Lou WY, Zong MH. Efficient asymmetric hydrolysis of styrene oxide catalyzed by Mung bean epoxide hydrolases in ionic liquid-based biphasic systems. Bioresour Technol. 2012;115:58–62.CrossRef
    31.Yu CY, Li XF, Lou WY, Zong MH. Cross-linked enzyme aggregates of Mung bean epoxide hydrolases: a highly active, stable and recyclable biocatalyst for asymmetric hydrolysis of epoxides. J Biotechnol. 2013;166:12–9.CrossRef
    32.Nakaya H, Miyawaki O, Nakamura K. Determination of log P for pressurized carbon dioxide and its characterization as a medium for enzyme reaction. Enzyme Microb Tech. 2001;28:176–82.CrossRef
    33.Lou WY, Zong MH, Smith TJ. Use of ionic liquids to improve whole-cell biocatalytic asymmetric reduction of acetyltrimethylsilane for efficient synthesis of enantiopure (S)-1-trimethylsilylethanol. Green Chem. 2006;8:147–55.CrossRef
    34.Zhang BB, Cheng J, Lou WY, Wang P, Zong MH. Efficient anti-Prelog enantioselective reduction of acetyltrimethylsilane to (R)-1-trimethylsilylethanol by immobilized Candida parapsilosis CCTCC M203011 cells in ionic liquid-based biphasic systems. Microb Cell Fact. 2012;11:1186.
    35.Gao P, Li A, Lee HH, Wang DIC, Li Z. Enhancing enantioselectivity and productivity of P450-catalyzed asymmetric sulfoxidation with an aqueous/ionic liquid biphasic system. Acs Catal. 2014;4:3763–71.CrossRef
    36.Pfruender H, Amidjojo M, Kragl U, Weuster-Botz D. Efficient whole-cell biotransformation in a biphasic ionic liquid/water system. Angew Chem Int Edit. 2004;43:4529–31.CrossRef
    37.Gangu SA, Weatherley LR, Scurto AM. Whole-Cell biocatalysis with ionic liquids. Curr Org Chem. 2009;13:1242–58.CrossRef
    38.Gorke J, Srienc F, Kazlauskas R. Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol Bioprocess Eng. 2010;15:40–53.CrossRef
    39.Kohlmann C, Robertz N, Leuchs S, Dogan Z, Luetz S, Bitzer K, Na’amnieh S, Greiner L. Ionic liquid facilitates biocatalytic conversion of hardly water soluble ketones. J Mol Catal B Enzym. 2011;68:147–53.CrossRef
    40.De Winter K, Verlinden K, Kren V, Weignerova L, Soetaert W, Desmet T. Ionic liquids as cosolvents for glycosylation by sucrose phosphorylase: balancing acceptor solubility and enzyme stability. Green Chem. 2013;15:1949–55.CrossRef
    41.Guo J-L, Mu X-Q, Xu Y. Integration of newly isolated biocatalyst and resin-based in situ product removal technique for the asymmetric synthesis of (R)-methyl mandelate. Bioproc Biosyst Eng. 2010;33:797–804.CrossRef
    42.Du PX, Wei P, Lou WY, Zong MH. Biocatalytic anti-Prelog reduction of prochiral ketones with whole cells of Acetobacter pasteurianus GIM1.158. Microb Cell Fact. 2014;13:84.CrossRef
    43.Chen WJ, Lou WY, Yu CY, Wu H, Zong MH, Smith TJ. Use of hydrophilic ionic liquids in a two-phase system to improve Mung bean epoxide hydrolases-mediated asymmetric hydrolysis of styrene oxide. J Biotechnol. 2012;162:183–90.CrossRef
    44.Wang ZY, Bi YH, Zong MH. Regioselective enzymatic procedure for preparing 3′-O-stearoyl-6-azauridine by using Burkholderia cepacia lipase. Biotechnol Bioproc E. 2012;17:393–7.CrossRef
    45.Xu P, Xu Y, Li XF, Zhao BY, Zong MH, Lou WY. Enhancing asymmetric reduction of 3-chloropropiophenone with immobilized Acetobacter sp. CCTCC M209061 cells by using deep eutectic solvents as cosolvents. ACS Sustain Chem Eng. 2015;3:718–24.CrossRef
    46.Chen XH, Lou WY, Zong MH, Smith TJ. Optimization of culture conditions to produce high yields of active Acetobacter sp. CCTCC M209061 cells for anti-Prelog reduction of prochiral ketones. BMC Biotechnol. 2011;11:110.CrossRef
    47.Cetinus SA, Oztop HN, Saraydin D. Immobilization of catalase onto chitosan and cibacron blue F3GA attached chitosan beads. Enzyme Microb Tech. 2007;41:447–54.CrossRef
    48.Chang MY, Juang RS. Activities, stabilities, and reaction kinetics of three free and chitosan-clay composite immobilized enzymes. Enzyme Microb Tech. 2005;36:75–82.CrossRef
    49.Li YN, Shi XA, Zong MH, Meng C, Dong YQ, Guo YH. Asymmetric reduction of 2-octanone in water/organic solvent biphasic system with Baker’s yeast FD-12. Enzyme Microb Tech. 2007;40:1305–11.CrossRef
    50.Weuster-Botz D. Process intensification of whole-cell biocatalysis with ionic liquids. Chem Rec. 2007;7:334–40.CrossRef
  • 作者单位:Ping Wei (1) (2)
    Jing Liang (1) (3)
    Jing Cheng (1) (3)
    Min-Hua Zong (2) (3)
    Wen-Yong Lou (1) (3)

    1. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People’s Republic of China
    2. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People’s Republic of China
    3. Lab of Applied Biocatalysis, College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Applied Microbiology
    Environmental Engineering/Biotechnology
  • 出版者:BioMed Central
  • ISSN:1475-2859
文摘
Background Enantiopure (S)-1-(4-methoxyphenyl) ethanol {(S)-MOPE} can be employed as an important synthon for the synthesis of cycloalkyl [b] indoles with the treatment function for general allergic response. To date, the biocatalytic resolution of racemic MOPE through asymmetric oxidation in the biphasic system has remained largely unexplored. Additionally, deep eutectic solvents (DESs), as a new class of promising green solvents, have recently gained increasing attention in biocatalysis for their excellent properties and many successful examples in biocatalytic processes. In this study, the biocatalytic asymmetric oxidation of MOPE to get (S)-MOPE using Acetobacter sp. CCTCC M209061 cells was investigated in different two-phase systems, and adding DES in a biphasic system was also explored to further improve the reaction efficiency of the biocatalytic oxidation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700