用户名: 密码: 验证码:
Sublethal concentration of benzothiazole adversely affect development, reproduction and longevity of Bradysia odoriphaga (Diptera: Sciaridae)
详细信息    查看全文
  • 作者:Yunhe Zhao ; Peng Zhang ; Yongbiao Zhai ; Chengyu Chen ; Qiuhong Wang
  • 关键词:Bradysia odoriphaga ; Life table ; Benzothiazole ; Sublethal effect ; Nature derive fumigant
  • 刊名:Phytoparasitica
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:44
  • 期:1
  • 页码:115-124
  • 全文大小:734 KB
  • 参考文献:Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.CrossRef
    Aguiar, M. C. S., Silvério, F. O., Pinho, G. P., Lopes, P. S. N., Fidêncio, P. H., & Ventura, S. J. (2014). Volatile compounds from fruits of Butia capitata at different stages of maturity and storage. Food Research International, 62, 1095–1099.CrossRef
    Bao, H. B., Liu, S. H., Gu, J. H., Wang, X. Z., Liang, X. L., & Liu, Z. W. (2009). Sublethal effects of four insecticides on the reproduction and wing formation of brown planthopper, Nilaparvata lugens. Pest Management Science, 65, 170–174.CrossRef PubMed
    Booth, L. H., Wratten, S. D., & Kehrli, P. (2007). Effects of reduced rates of two insecticides on enzyme activity and mortality of an aphid and its lacewing predator. Journal of Economic Entomology, 100, 11–19.CrossRef PubMed
    Chen, C. Y., Zhao, Y. H., Li, H., Zhang, P., Mu, W., & Liu, F. (2014). Biological activity of benzothiazole against Bradysia odoriphaga (Diptera: Sciaridae) at different developmental stages. Acta Entomologica Sinica, 57, 45–51.
    Chen, C. Y., Mu, W., Zhao, Y. H., Li, H., Zhang, P., Wang, Q. H., & Liu, F. (2015). Biological activity of trans-2-hexenal against Bradysia odoriphaga (Diptera: Sciaridae) at different developmental stages. Journal of Insect Science, 15(1), 97.
    Chi, H., & Liu, H. (1985). Two new methods for the study of insect population ecology. Bulletin of the Institute Zoology Academia Sinica, 24, 225–240.
    Chi, H., & Yang, T. C. (2003). Two sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environmental Entomology, 32, 327–333.CrossRef
    Chi, H. (1988). Life table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17, 26–34.CrossRef
    Chi, H. (2013). TWOSEX-MSChart: Computer program for age-stage, two-sex life table analysis. http://​140.​120.​197.​173/​Ecology/​ .
    Choi, W. S., Park, B. S., Lee, Y. H., Jang, D. Y., Yoon, H. Y., & Lee, S. E. (2006). Fumigant toxicities of essential oils and monoterpenes against Lycoriella mali adults. Crop Protection, 25, 398–401.CrossRef
    Chung, H. J., Lee, D. W., Yoon, H. S., Lee, S. M., Park, C. G., & Choo, H. Y. (2010). Temperature and dose effects on the pathogenicity and reproduction of two Korean isolates of Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae). Journal of Asia-Pacific Entomology, 13, 277–282.CrossRef
    Desneux, N., Decourtye, A., & Delpuech, J. M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81–106.CrossRef PubMed
    Ebrahimi, M., Sahragard, A., Talaei-Hassanloui, R., Kavousi, A., & Chi, H. (2013). The life table and parasitism rate of Diadegma insulare (Hymenoptera: Ichneumonidae) reared on larvae of Plutella xylostella (Lepidoptera: Plutellidae), with special reference to the variable sex ratio of the offspring and comparison of jackknife and bootstrap techniques. Annals of the Entomological Society of America, 106, 279–287.CrossRef
    Farhadi, R., Allahyari, H., & Chi, H. (2011). Life table and predation capacity of Hippodamia variegate (Coleoptera: Coccinellidae) feeding on Aphis fabae (Hemiptera: Aphididae). Biological Control, 59, 83–89.CrossRef
    Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S., & Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology & Biochemistry, 37, 955–964.CrossRef
    Gallois, A., Gross, B., Langlois, D., Spinnler, H. E., & Brunerie, P. (1990). Influence of culture conditions on production of flavour compounds by 29 ligninolytic Basidiomycetes. Mycological Research, 94, 494–504.CrossRef
    Geiselhardt, S., Yoneya, K., Blenn, B., Drechsler, N., Gershenzon, J., Kunze, R., & Hilker, M. (2013). Egg laying of cabbage white butterfly (Pieris brassicae) on Arabidopsis thaliana affects subsequent performance of the larvae. PLoS ONE, 8, e59661.PubMedCentral CrossRef PubMed
    Guo, L., Desneux, N., Sonoda, S., Liang, P., Han, P., & Gao, X. W. (2013). Sublethal and transgenerational effects of chlorantraniliprole on biological traits of the diamondback moth, Plutella xylostella L. Crop Protection, 48, 29–34.CrossRef
    Han, W. S., Zhang, S. F., Shen, F. Y., Liu, M., Ren, C. C., & Gao, X. W. (2012). Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae). Pest Management Science, 68, 1184–1190.CrossRef PubMed
    Huang, Y. B., & Chi, H. (2012). Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Science, 19, 263–273.CrossRef
    Huang, Y. Z., Hua, H. X., Li, S. G., & Yang, C. J. (2011). Contact and fumigant toxicities of calamusenone isolated from Acorus gramineus rhizome against adults of Sitophilus zeamais and Rhizopertha dominica. Insect Science, 18, 181–188.CrossRef
    Imahori, Y., Suzuki, Y., Uemura, K., Kishioka, I., Fujiwara, H., Ueda, Y., & Chachin, K. (2004). Physiological and quality responses of Chinese chive leaves to low oxygen atmosphere. Postharvest Biology and Technology, 31, 295–303.CrossRef
    Ko, A. Y., Rahman, M. M., El-Aty, A. M. A., Jang, J., Choi, J. H., Mamun, M. I. R., & Shim, J. H. (2014). Identification of volatile organic compounds generated from healthy and infected powdered chili using solvent-free solid injection coupled with GC/MS: application to adulteration. Food Chemistry, 156, 326–332.CrossRef PubMed
    Lee, S. E., Lee, B. H., Choi, W. S., Park, B. S., Kim, J. G., & Campbell, B. C. (2001). Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae (L). Pest Management Science, 57, 548–553.CrossRef PubMed
    Li, H. J., He, X. K., Zeng, A. J., Liu, Y. J., & Jiang, S. R. (2007). Bradysia odoriphaga copulatory behavior and evidence of a female sex pheromone. Journal of Agricultural and Urban Entomology, 24, 27–34.CrossRef
    Li, W. X., Yang, Y. T., Xie, W., Wu, Q. J., Xu, B. Y., Wang, S. L., Zhu, X., Wang, S. J., & Zhang, Y. J. (2015). Effects of temperature on the age-stage, two-sex life table of Bradysia odoriphaga (Diptera: Sciaridae). Journal of Economic Entomology, 108, 126–134.CrossRef PubMed
    Liu, W. W., Ji, J., Wang, C., Mu, W., & Liu, F. (2009). Evaluation and identification of the potential nematicidal volatiles produced by bacillus subtilis. Acta Phytopathologica Sinica, 39, 304–309.
    Ma, J., Chen, S. L., Moens, M., Han, R., & Clercq, P. (2013). Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the chive gnat, Bradysia odoriphaga. Journal of Pest Science, 86, 551–561.CrossRef
    Mei, Z. X., Wu, Q. J., Zhang, Y. J., & Hua, L. (2003). The biology, ecology and management of Bradysia odoriphaga. Entomological Knowledge, 40, 396–398.
    Mu, W., Liu, F., Jia, Z. M., He, M. H., & Xiang, G. F. (2003). A simple and convenient rearing technique for Bradysia odoriphaga. Entomological Journal of East China, 12, 87–89.
    Schneider, M. I., Sanchez, N., Pineda, S., Chi, H., & Ronco, A. (2009). Impact of glyphosate on the development, fertility and demography of Chrysoperla externa (Neuroptera: Chrysopidae): ecological approach. Chemosphere, 76, 1451–1455.CrossRef PubMed
    Schneider, M. I., Smagghe, G., Pineda, S., & Vinuela, E. (2004). Action of insect growth regulator insecticides and spinosad on life history parameters and absorption in third-instar larvae of the endoparasitoid Hyposoter didymator. Biological Control, 31, 189–198.CrossRef
    Seifert, R. M., & King, A. D. (1982). Identification of some volatile constituents of Aspergillus clavatus. Journal of Agricultural and Food Chemistry, 30, 786–790.CrossRef
    Sohrabi, F., Shishehbor, P., Saber, M., & Mosaddegh, M. S. (2012). Lethal and sublethal effects of buprofezin and imidacloprid on the whitefly parasitoid Encarsia inaron (Hymenoptera: Aphelinidae). Crop Protection, 32, 83–89.CrossRef
    Stark, J. D., & Banks, J. E. (2003). Population-level effects of pesticides and other toxicants on arthropods. Annual Review of Entomology, 48, 505–519.CrossRef PubMed
    Stoyenoff, J. L., Witter, J. A., & Montgomery, M. E. (1994). Gypsy Moth (Lepidoptera: Lymantriidae) performance in relation to egg hatch and feeding initiation times. Environmental Entomology, 23, 1450–1458.CrossRef
    Tuan, S. J., Li, N. J., Yeh, C. C., Tang, L. C., & Chi, H. (2014). Effects of green manure cover crops on Spodoptera litura (Lepidoptera: Noctuidae) populations. Journal of Economic Entomology, 107, 897–905.CrossRef PubMed
    Yang, J. K., & Zhang, X. M. (1985). Notes on the fragrant onion gnats with descriptions of two new species. Acta Agricultural University Pekinen, 11(2), 153–156.
    Yang, X. F., Jiang, H., Yang, H. W., Liu, Z., & Yuan, J. J. (2004). Using entomopathogenic nematodes for control of chive maggot, Bradysia odoriphaga Yang et Zhang. Acta Phytophylacica Sinica, 31, 33–37.
    Yang, Y. T., Li, W. X., Xie, W., Wu, Q. J., Xu, B. Y., Wang, S. L., Li, C. R., & Zhang, Y. J. (2015). Development of Bradysia odoriphaga (Diptera: Sciaridae) as affected by humidity: an age–stage, two-sex, life-table study. Applied Entomology and Zoology, 50, 3–10.CrossRef
    Yazdani, E., Sendi, J. J., Aliakbar, A., & Senthil-Nathan, S. (2013). Effect of Lavandula angustifolia essential oil against lesser mulberry pyralid Glyphodes pyloalis Walker (Lep: Pyralidae) and identification of its major derivatives. Pesticide Biochemistry and Physiology, 107, 250–257.CrossRef
    Yu, L. Y., Chen, Z. Z., Zheng, F. Q., Shi, A. J., Guo, T. T., Ye, B. H., Chi, H., & Xu, Y. Y. (2013). Demographic analysis, a comparison of the jackknife and bootstrap methods, and predation projection: a case study of Chrysopa pallens (Neuroptera: Chrysopidae). Journal of Economic Entomology, 106, 1–9.CrossRef PubMed
    Zhang, H., Mallik, A., & Zeng, R. S. (2013). Control of panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum Rottler): role of plant volatiles. Journal of Chemical Ecology, 39, 243–252.CrossRef PubMed
    Zhang, P., Liu, F., Mu, W., Wang, Q. H., Li, H., & Chen, C. Y. (2014a). Life table study of the effects of sublethal concentrations of thiamethoxam on Bradysia odoriphaga Yang and Zhang. Pesticide Biochemistry Physiology, 111, 31–37.CrossRef PubMed
    Zhang, P., Chen, C. Y., Li, H., Liu, F., & Mu, W. (2014b). Selective toxicity of seven neonicotinoid insecticides to fungus gnat Bradysia odoriphaga and earthworm Eisenia foetida. Acta Phytophylacica Sinica, 41, 79–86.
    Zhang, P., Liu, F., Mu, W., Wang, Q. H., & Li, H. (2015a). Comparison of Bradysia odoriphaga Yang and Zhang reared on artificial diet and different host plants based on an age-stage, two-sex life table. Phytoparasitica, 43, 107–120.CrossRef
    Zhang, R. M., Jang, E. B., He, S. Y., & Chen, J. H. (2015b). Lethal and sublethal effects of cyantraniliprole on Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Pest Management Science, 71, 250–256.CrossRef PubMed
    Zhao, L. J., Yang, X. N., Li, X. Y., Mu, W., & Liu, F. (2011). Antifungal, insecticidal and herbicidal properties of volatile components from Paenibacillus polymyxa strain BMP-11. Agricultural Sciences in China, 10, 728–736.CrossRef
    Zhao, Y. H., Xu, C. M., Wang, Q. H., Wei, Y., Liu, F., Xu, S. Y., Zhang, Z. Q., & Mu, W. (2015). Effects of the microbial secondary metabolite benzothiazole on the nutritional physiology and enzyme activities of Bradysia odoriphaga (Diptera: Sciaridae). Pesticide Biochemistry Physiology. doi:10.​1016/​j.​pestbp.​2015.​10.​017 .
  • 作者单位:Yunhe Zhao (1)
    Peng Zhang (1) (2)
    Yongbiao Zhai (1)
    Chengyu Chen (1)
    Qiuhong Wang (1)
    Jingkun Han (1)
    Zhengqun Zhang (3)
    Feng Liu (1)
    Wei Mu (1)

    1. College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, 61 Daizong Street, Tai’an, Shandong, 271018, People’s Republic of China
    2. College of Environmental Science and Engineering, Nankai University, Tianjin, China
    3. College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, 271018, People’s Republic of China
  • 刊物主题:Plant Pathology; Plant Sciences; Ecology; Agriculture; Life Sciences, general;
  • 出版者:Springer Netherlands
  • ISSN:1876-7184
文摘
The chive maggot, Bradysia odoriphaga (Diptera: Sciaridae), is the major pest that damages Chinese chive in China. Benzothiazole is a volatile compound derived from microorganisms secondary metabolites and has fumigant activity against B. odoriphaga. However, the sublethal effects of benzothiazole need to be evaluated before registration and application, to fully understand the potential for control of this pest. Laboratory investigations showed that sublethal concentrations (LC10 and LC30) of benzothiazole decreased the survival rate and the fecundity of B. odoriphaga compared with control. However, the developmental times of eggs, larvae and pupae, and the total preoviposition period were prolonged. Additionally, population parameters were significantly affected in the treated groups. The intrinsic rate of increase (r m ) decreased to 0.1391 (LC10) and 0.1140 (LC30) day-1 compared with the control population (0.1589 day-1). The net reproductive rate (R 0 ) in the control was 54.39 offspring/individual, whereas the R 0 decreased to 41.80 and 25.08 offspring/individual in the LC10 and LC30 treatments, respectively. This study demonstrated that sublethal concentrations of benzothiazole adversely affected the developmental time, fecundity and life table parameters of B. odoriphaga. Therefore, benzothiazole has the potential to be exploited as a natural derived fumigant for the control of this pest.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700