用户名: 密码: 验证码:
Microstructure and Properties of (TiB2?+?NiTi)/Ti Composite Coating Fabricated by Laser Cladding
详细信息    查看全文
  • 作者:Yinghua Lin ; Yongping Lei ; Hanguang Fu…
  • 关键词:composite coating ; laser cladding ; NiTi ; TiB2
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:24
  • 期:10
  • 页码:3717-3725
  • 全文大小:4,516 KB
  • 参考文献:1.F. Weng, H.J. Yu, C.Z. Chen, and J.J. Dai, Microstructures and Wear Properties of Laser Cladding Co-Based Composite Coatings on Ti-6Al-4V, Mater. Des., 2015, 80, p 174-81CrossRef
    2.B.A. Obadele, A. Andrews, M.T. Mathew, P.A. Olubambi, and S. Pityana, Improving the Tribocorrosion Resistance of Ti6Al4V Surface by Laser Surface Cladding with TiNiZrO2 Composite Coating, Appl. Surf. Sci., 2015, 345, p 99-08CrossRef
    3.W.L. Wu, Dissolution Precipitation Mechanism of TiC/Ti Composite Layer Produced by Laser Cladding, Mater. Sci. Technol., 2010, 26, p 367-70CrossRef
    4.D. Galvan, V. Ocel?′k, Y. Pei, B.J. Kooi, J.T.M.D. Hosson, and E. Ramous, Microstructure and Properties of TiB/Ti-6Al-4V Coatings Produced with Laser Treatments, J. Mater. Eng. Perform., 2004, 13, p 406-12CrossRef
    5.M. Das, K. Bhattacharya, S.A. Dittrick, C. Mandal, V.K. Balla, and K.T.S. Sampath, In Situ Synthesized TiB-TiN Reinforced Ti6Al4V Alloy Composite Coatings: Microstructure, Tribological and In Vitro Biocompatibility, J. Mech. Behav. Biomed. Mater., 2014, 29, p 259-71CrossRef
    6.Y. Wu, A.H. Wang, Z. Zhang, H.B. Xia, and Y.N. Wang, Microstructure, Wear Resistance and Cell Proliferation Ability of In Situ Synthesized Ti-B Coating Produced by Laser Alloying, Opt. Laser Technol., 2015, 67, p 176-82CrossRef
    7.J. Li, X. Luo, and G.J. Li, Effect of Y2O3 on the Sliding Wear Resistance of TiB/TiC-Reinforced Composite Coatings Fabricated by Laser Cladding, Wear, 2014, 310, p 72-2CrossRef
    8.V. Ocelik, D. Matthews, and J.T.M. de Hosson, Sliding Wear Resistance of Metal Matrix Composite Layers Prepared by High Power Laser, Surf. Coat. Technol., 2005, 197, p 303-15CrossRef
    9.B.S. Li, J.L. Shang, J.J. Guo, and H.Z. Fu, In Situ Observation of Fracture Behavior of In Situ TiBw/Ti Composites, Mat. Sci. Eng. A, 2004, 383, p 316-22CrossRef
    10.P.Y. Xu, Y.C. Liu, P. Yi, C.F. Fan, and C.K. Li, Research on Variation and Stress Status of Graphite in Laser Cladding Process of Grey Cast Iron, Mater. Sci. Technol., 2014, 30, p 1728-734CrossRef
    11.V. Sinha, R. Srinivasan, S. Tamirisakandala, and D.B. Miracle, Superplastic Behavior of Ti-6Al-4V-0.1B Alloy, Mater. Sci. Eng. A, 2012, 539, p 7-2CrossRef
    12.X.H. Wang, S.Y. Qu, B.S. Du, Z.D. Zou, and X.R. Wang, Effect of Molybdenum on Microstructure and Wear Properties of Fe-Ti-Mo-C Laser Clad Coatings, Mater. Sci. Technol., 2011, 27, p 1222-228CrossRef
    13.L.J. Huang, L. Geng, and H.X. Peng, In Situ (TiBw?+?TiCp)/Ti6Al4V Composites with a Network Reinforcement Distribution, Mater. Sci. Eng. A, 2010, 527, p 6723-727CrossRef
    14.V.V. Patel, A. El-Desouky, J.E. Garay, and K. Morsi, Pressure-Less and Current-Activated Pressure-Assisted Sintering of Titanium Dual Matrix Composites: Effect of Reinforcement Particle Size, Mater. Sci. Eng. A, 2009, 507, p 161-66CrossRef
    15.L.J. Huang, L. Geng, H.X. Peng, and J. Zhang, Room Temperature Tensile Fracture Characteristics of In Situ TiBw/Ti6Al4V Composites with a Quasi-Continuous Network Architecture, Scr. Mater., 2011, 64, p 844-47CrossRef
    16.L.J. Huang, L. Geng, H.X. Peng, K. Balasubramaniam, and G.S. Wang, Effects of Sintering Parameters on the Microstructure and Tensile Properties of In Situ TiBw/Ti6Al4V Composites with a Novel Network Architecture, Mater. Des., 2011, 32, p 3347-353CrossRef
    17.B.S. Yilbas, C. Karatas, H. Karakoc, A.B.J. Abdul, S. Khan, and N. Al-Aqeeli, Laser Surface Treatment of Aluminum Based Composite Mixed with B4C Particles, Opt. Laser Technol., 2015, 66, p 129-37CrossRef
    18.H.M. Wang, F. Cao, L.X. Cai, H.B. Tang, and L.Y. Zhang, Microstructure and Tribological Properties of Laser Clad Ti2Ni3Si/NiTi Intermetallic Coatings, Acta Mater., 2003, 51, p 6319-327CrossRef
    19.J.H. Li, F.G. Li, X.K. Ma, Q.R. Wang, J.Z. Dong, and Z.W. Yuan, A Strain-Dependent Ductile Damage Model and its Application in the Derivation of Fracture Toughness by Micro-indentation, Mater. Des., 2015, 67, p 623-30CrossRef
    20.I. Campos-Silva, D. Bravo-Bárcenas, H. Cimenoglu, U. Figueroa-López, M. Flores-Jiménez, and O. Meydanoglu, The Boriding Process in CoCrMo Alloy: Fracture Toughness in Cobalt Boride Coatings, Surf. Coat. Technol., 2014, 260, p 362-68CrossRef
    21.X. Wang, C.J. Wang, and A. Atkinson, Interface Fracture Toughness in Thermal Barrier Coatings by Cross-Sectional Indentation, Acta Mater., 2012, 60, p 6152-163CrossRef
    22.C.J. Zhang, F.T. Kong, S.L. Xiao, H.Z. Niu, L.J. Xu, and Y.Y. Chen, Evolution of Microstructural Characteristic and Tensile Properties During Preparation of TiB/Ti Composite Sheet, Mater. Des., 2012, 36, p 505-10CrossRef
    23.D.L. Ye and J.H. Hu, Utility Inorganic Materials Thermodynamics Data Handbook, 2nd ed., Metallurgy Industry Press, Beijing, 2002
    24.Y.F. Yang and Q.C. Jiang, Reaction Behaviour, Microstructure and Mechanical Properties of TiC-TiB2/Ni Composite Fabricated by Pressure Assisted Self-Propagating High-Temperature Synthesis in Air and Vacuum, Ma
  • 作者单位:Yinghua Lin (1)
    Yongping Lei (1)
    Hanguang Fu (1)
    Jian Lin (1)

    1. School of Materials Science and Engineering, Beijing University of Technology, Number 100, Pingle Garden, Chaoyang District, Beijing, 100124, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
Agglomerated TiB2 particle and network-like structure-reinforced titanium matrix composite coatings were prepared by laser cladding of the Ni + TiB2 + Ti preplaced powders on Ti-6Al-4V alloy. The network-like structure mainly consisted of NiTi and Ni3Ti. Through the experiment, it was found that the size of agglomerated particle gradually decreased with the increase of Ti content, but the number of the network-like structure first increased and then disappeared. In-situ reaction competition mechanism and the formation of network-like structure were discussed. The average micro-hardness gradually decreased with the increase of Ti content, but the average fracture toughness gradually increased. Meanwhile, the wear resistance of the coatings is higher than that of the substrate, but the wear loss of the coatings is gradually increased with the increase of Ti content. Keywords composite coating laser cladding NiTi TiB2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700