用户名: 密码: 验证码:
Combining positive and negative magnetophoreses to separate particles of different magnetic properties
详细信息    查看全文
  • 作者:Taotao Zhu (1)
    Rui Cheng (2)
    Yufei Liu (3)
    Jian He (3)
    Leidong Mao (2)
  • 关键词:Separation ; Ferrofluid ; Microfluidics ; Magnetophoresis
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:17
  • 期:6
  • 页码:973-982
  • 全文大小:3,248 KB
  • 参考文献:1. Erb RM, Son HS, Samanta B, Rotello VM, Yellen BB (2009) Magnetic assembly of colloidal superstructures with multipole symmetry. Nature 457(7232):999鈥?002. doi:10.1038/Nature07766 CrossRef
    2. Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518鈥?563. doi:10.1021/Cr9001929 CrossRef
    3. Hahn YK, Park JK (2011) Versatile immunoassays based on isomagnetophoresis. Lab Chip 11(12):2045鈥?048. doi:10.1039/C0lc00569j CrossRef
    4. Jing Y, Mal N, Williams PS, Mayorga M, Penn MS, Chalmers JJ, Zborowski M (2008) Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis. Faseb J 22(12):4239鈥?247. doi:10.1096/Fj.07-105544 CrossRef
    5. Jones TB (1995) Electromechanics of particles. Cambridge University Press, Cambridge CrossRef
    6. Kang JH, Choi S, Lee W, Park JK (2008) Isomagnetophoresis to discriminate subtle difference in magnetic susceptibility. J Am Chem Soc 130(2):396鈥?97. doi:10.1021/Ja0770678 CrossRef
    7. Khalil KS, Sagastegui A, Li Y, Tahir MA, Socolar JES, Wiley BJ, Yellen BB (2012) Binary colloidal structures assembled through Ising interactions. Nat Commun 3:794. doi:10.1038/Ncomms1798 CrossRef
    8. Kose AR, Koser H (2012) Ferrofluid mediated nanocytometry. Lab Chip 12(1):190鈥?96. doi:10.1039/C1lc20864k CrossRef
    9. Kose AR, Fischer B, Mao L, Koser H (2009) Label-free cellular manipulation and sorting via biocompatible ferrofluids. Proc Natl Acad Sci USA 106(51):21478鈥?1483. doi:10.1073/Pnas.0912138106 CrossRef
    10. Krebs MD, Erb RM, Yellen BB, Samanta B, Bajaj A, Rotello VM, Alsberg E (2009) Formation of ordered cellular structures in suspension via label-free negative magnetophoresis. Nano Lett 9(5):1812鈥?817. doi:10.1021/Nl803757u CrossRef
    11. Li KH, Yellen BB (2010) Magnetically tunable self-assembly of colloidal rings. Appl Phys Lett 97(8):083105. doi:10.1063/1.3483137 CrossRef
    12. Liang LT, Xuan XC (2012) Diamagnetic particle focusing using ferromicrofluidics with a single magnet. Microfluid Nanofluidics 13(4):637鈥?43. doi:10.1007/S10404-012-1003-X CrossRef
    13. Liang LT, Zhu JJ, Xuan XC (2011) Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows. Biomicrofluidics 5(3):034110. doi:10.1063/1.3618737 CrossRef
    14. Liu CX, Stakenborg T, Peeters S, Lagae L (2009) Cell manipulation with magnetic particles toward microfluidic cytometry. J Appl Phys 105(10):102014. doi:10.1063/1.3116091 CrossRef
    15. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17(2):1247鈥?248. doi:10.1109/Tmag.1981.1061188 CrossRef
    16. Mihajlovic G, Aledealat K, Xiong P, Von Molnar S, Field M, Sullivan GJ (2007) Magnetic characterization of a single superparamagnetic bead by phase-sensitive micro-Hall magnetometry. Appl Phys Lett 91(17):172518. doi:10.1063/1.2802732 CrossRef
    17. Nguyen N-T (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluidics 12(1鈥?):1鈥?6. doi:10.1007/s10404-011-0903-5 CrossRef
    18. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24鈥?8. doi:10.1039/B513005k CrossRef
    19. Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6(8):974鈥?80. doi:10.1039/B604542a CrossRef
    20. Peyman SA, Kwan EY, Margarson O, Iles A, Pamme N (2009) Diamagnetic repulsion鈥攁 versatile tool for label-free particle handling in microfluidic devices. J Chromatogr A 1216(52):9055鈥?062. doi:10.1016/j.chroma.2009.06.039 CrossRef
    21. Robert D, Pamme N, Conjeaud H, Gazeau F, Iles A, Wilhelm C (2011) Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip 11(11):1902鈥?910. doi:10.1039/C0lc00656d CrossRef
    22. Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge
    23. Shen F, Hwang H, Hahn YK, Park JK (2012) Label-free cell separation using a tunable magnetophoretic repulsion force. Anal Chem 84(7):3075鈥?081. doi:10.1021/Ac201505j CrossRef
    24. Shevkoplyas SS, Siegel AC, Westervelt RM, Prentiss MG, Whitesides GM (2007) The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip 7(10):1294鈥?302. doi:10.1039/B705045c CrossRef
    25. Skjeltorp AT (1983) One-dimensional and two-dimensional crystallization of magnetic holes. Phys Rev Lett 51(25):2306鈥?309. doi:10.1103/Physrevlett.51.2306 CrossRef
    26. Tarn MD, Hirota N, Iles A, Pamme N (2009a) On-chip diamagnetic repulsion in continuous flow. Sci Technol Adv Mater 10(1):014611. doi:10.1088/1468-6996/10/1/014611 CrossRef
    27. Tarn MD, Peyman SA, Robert D, Iles A, Wilhelm C, Pamme N (2009b) The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J Magn Magn Mater 321(24):4115鈥?122. doi:10.1016/J.Jmmm.08.016 CrossRef
    28. van Ommering K, Nieuwenhuis JH, van IJzendoorn LJ, Koopmans B, Prins MWJ (2006) Confined Brownian motion of individual magnetic nanoparticles on a chip: characterization of magnetic susceptibility. Appl Phys Lett 89(14):142511. doi:10.1063/1.2360246 CrossRef
    29. Vojt铆拧ek M, Tarn M, Hirota N, Pamme N (2012) Microfluidic devices in superconducting magnets: on-chip free-flow diamagnetophoresis of polymer particles and bubbles. Microfluid Nanofluidics 13(4):625鈥?35. doi:10.1007/s10404-012-0979-6 CrossRef
    30. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153鈥?84. doi:10.1146/Annurev.Matsci.28.1.153 CrossRef
    31. Yellen BB, Hovorka O, Friedman G (2005) Arranging matter by magnetic nanoparticle assemblers. Proc Natl Acad Sci USA 102(25):8860鈥?864. doi:10.1073/Pnas.0500409102 CrossRef
    32. Zeng J, Chen C, Vedantam P, Brown V, Tzeng TRJ, Xuan XC (2012) Three-dimensional magnetic focusing of particles and cells in ferrofluid flow through a straight microchannel. J Micromech Microeng 22(10):105018. doi:10.1088/0960-1317/22/10/105018 CrossRef
    33. Zhu TT, Marrero F, Mao LD (2010) Continuous separation of non-magnetic particles inside ferrofluids. Microfluid Nanofluidics 9(4鈥?):1003鈥?009. doi:10.1007/S10404-010-0616-1 CrossRef
    34. Zhu T, Cheng R, Mao L (2011a) Focusing microparticles in a microfluidic channel with ferrofluids. Microfluid Nanofluidics 11(6):695鈥?01. doi:10.1007/s10404-011-0835-0 CrossRef
    35. Zhu TT, Lichlyter DJ, Haidekker MA, Mao LD (2011b) Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet. Microfluid Nanofluidics 10(6):1233鈥?245. doi:10.1007/S10404-010-0754-5 CrossRef
    36. Zhu TT, Cheng R, Lee SA, Rajaraman E, Eiteman MA, Querec TD, Unger ER, Mao LD (2012) Continuous-flow ferrohydrodynamic sorting of particles and cells in microfluidic devices. Microfluid Nanofluidics 13(4):645鈥?54. doi:10.1007/S10404-012-1004-9 CrossRef
  • 作者单位:Taotao Zhu (1)
    Rui Cheng (2)
    Yufei Liu (3)
    Jian He (3)
    Leidong Mao (2)

    1. Department of Chemistry, Nanoscale Science and Engineering Center, The University of Georgia, Athens, GA, 30602, USA
    2. College of Engineering, Nanoscale Science and Engineering Center, The University of Georgia, Athens, GA, 30602, USA
    3. Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
  • ISSN:1613-4990
文摘
A new separation method that combines both positive and negative magnetophoreses based on ferrofluids is used to separate mixtures of particles with different magnetic properties. Ferrofluids are stable magnetic nanoparticles suspensions. Under external magnetic field gradients, particles with a larger magnetization within the ferrofluids are attracted to a magnet while the ones with a smaller magnetization are pushed away from it. Based on this principle, we report the design, modeling, fabrication, and characterization of the separation device and use it to separate magnetic and non-magnetic particles, as well as particles with different magnetizations. This scheme is simple, cost-effective, and label-free compared to other existing techniques.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700