用户名: 密码: 验证码:
Transcriptome analysis of secondary cell wall development in Medicago truncatula
详细信息    查看全文
  • 作者:Huanzhong Wang ; Jung Hyun Yang ; Fang Chen ; Ivone Torres-Jerez ; Yuhong Tang…
  • 关键词:Transcriptome ; Expression ; Secondary cell wall ; Development ; Medicago truncatula
  • 刊名:BMC Genomics
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:17
  • 期:1
  • 全文大小:3,960 KB
  • 参考文献:1.Ane JM, Zhu H, Frugoli J. Recent advances in Medicago truncatula genomics. Int J Plant Genomics. 2008;2008:256597.PubMed PubMedCentral CrossRef
    2.Graham PH, Vance CP. Legumes: importance and constraints to greater use. Plant Physiol. 2003;131(3):872–7.PubMed PubMedCentral CrossRef
    3.Bouton J. The economic benefits of forage improvement in the United States. Euphytica. 2007;154(3):263–70.CrossRef
    4.Downing MV, Timothy A, Schmidt DA. Development of new generation cooperatives in agriculture for renewable energy research, development, and demonstration projects. Biomass Bioenergy. 2005;28(5):425–34.CrossRef
    5.O’Rourke JA, Bolon YT, Bucciarelli B, Vance CP. Legume genomics: understanding biology through DNA and RNA sequencing. Ann Bot. 2014;113(7):1107–20.PubMed PubMedCentral CrossRef
    6.Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, et al. Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci U S A. 2004;101(43):15289–94.PubMed PubMedCentral CrossRef
    7.Tesfaye MY, Samuel S, Lamb FSJA, Jung GH-J, Samac AD, Vance PC, et al. Medicago truncatula as a model for dicot cell wall development. Bioenerg Res. 2009;2:59–76.CrossRef
    8.Young ND, Debelle F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature. 2011;480(7378):520–4.PubMed PubMedCentral
    9.Vickery PJH, J M, Donald GE. Satellite derived maps of pasture growth status: association of classification with botanical composition. Aust J Exp Agric. 1997;37(5):547–62.CrossRef
    10.Jense SE, H-N H. How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil. 2003;252(1):177–86.CrossRef
    11.Chen F, Dixon RA. Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol. 2007;25(7):759–61.PubMed CrossRef
    12.Dixon RAR, Srinivasa MS. Biosynthesis of monolignols. Genomic and reverse genetic approaches. Phytochem Rev. 2003;2:289–306.CrossRef
    13.Reddy MS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci U S A. 2005;102(46):16573–8.PubMed PubMedCentral CrossRef
    14.USDA-APHIS. Monsanto company and Forage Genetics International; determination of nonregulatory status of genetically engineered alfalfa. In: Agriculture Do, vol. 79, editor. Federal Register. 2014. p. 66686–7.
    15.Carpita NC. Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy. Curr Opin Biotechnol. 2011.
    16.Demura T, Ye ZH. Regulation of plant biomass production. Curr Opin Plant Biol. 2010;13(3):299–304.PubMed CrossRef
    17.Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, et al. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 2005;19(16):1855–60.PubMed PubMedCentral CrossRef
    18.Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, et al. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell. 2007;19(1):270–80.PubMed PubMedCentral CrossRef
    19.Zhong R, Richardson EA, Ye ZH. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta. 2007;225(6):1603–11.PubMed CrossRef
    20.McCarthy RL, Zhong R, Ye ZH. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell Physiol. 2009;50(11):1950–64.PubMed CrossRef
    21.Zhong R, Richardson EA, Ye ZH. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell. 2007;19(9):2776–92.PubMed PubMedCentral CrossRef
    22.Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell. 2008;20(10):2763–82.PubMed PubMedCentral CrossRef
    23.Wang H, Zhao Q, Chen F, Wang M, Dixon RA. NAC domain function and transcriptional control of a secondary cell wall master switch. Plant J. 2011;68(6):1104–14.PubMed CrossRef
    24.Zhao QA, Wang HZ, Yin YB, Xu Y, Chen F, Dixon RA. Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch. Proc Natl Acad Sci U S A. 2010;107(32):14496–501.PubMed PubMedCentral CrossRef
    25.Guo D, Chen F, Inoue K, Blount JW, Dixon RA. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa. impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell. 2001;13(1):73–88.PubMed PubMedCentral CrossRef
    26.Zhao Q, Gallego-Giraldo L, Wang H, Zeng Y, Ding SY, Chen F, et al. An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. Plant J. 2010;63(1):100–14.PubMed
    27.Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, et al. A gene expression atlas of the model legume Medicago truncatula. Plant J. 2008;55(3):504–13.PubMed CrossRef
    28.Holmes P, Goffard N, Weiller GF, Rolfe BG, Imin N. Transcriptional profiling of Medicago truncatula meristematic root cells. BMC Plant Biol. 2008;8:21.PubMed PubMedCentral CrossRef
    29.Minic Z, Jamet E, San-Clemente H, Pelletier S, Renou JP, Rihouey C, et al. Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes. BMC Plant Biol. 2009;9:6.PubMed PubMedCentral CrossRef
    30.Schnurr JAJ, Hans-Joachim G, Samac DA. A comparative study of alfalfa and Medicago truncatula stem traits: morphology, chemical composition, and ruminal digestibility. Crop Sci. 2007;47:1672–80.CrossRef
    31.Dozmorov I, Centola M. An associative analysis of gene expression array data. Bioinformatics. 2003;19(2):204–11.PubMed CrossRef
    32.Demura T, Fukuda H. Transcriptional regulation in wood formation. Trends Plant Sci. 2007;12(2):64–70.PubMed CrossRef
    33.Zhao C, Avci U, Grant EH, Haigler CH, Beers EP. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant J. 2008;53(3):425–36.PubMed CrossRef
    34.Zhong R, Demura T, Ye ZH. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell. 2006;18(11):3158–70.PubMed PubMedCentral CrossRef
    35.Wang H, Avci U, Nakashima J, Hahn MG, Chen F, Dixon RA. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc Natl Acad Sci U S A. 2010;107(51):22338–43.PubMed PubMedCentral CrossRef
    36.Wang HZ, Dixon RA. On-off switches for secondary cell wall biosynthesis. Mol Plant. 2012;5(2):297–303.PubMed CrossRef
    37.Kakar K, Wandrey M, Czechowski T, Gaertner T, Scheible WR, Stitt M, et al. A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods. 2008;4:18.PubMed PubMedCentral CrossRef
    38.Taylor NG. Cellulose biosynthesis and deposition in higher plants. New Phytol. 2008;178(2):239–52.PubMed CrossRef
    39.Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci U S A. 2003;100(3):1450–5.PubMed PubMedCentral CrossRef
    40.Taylor NG, Laurie S, Turner SR. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell. 2000;12(12):2529–40.PubMed PubMedCentral CrossRef
    41.Zhong R, Morrison 3rd WH, Freshour GD, Hahn MG, Ye ZH. Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis. Plant Physiol. 2003;132(2):786–95.PubMed PubMedCentral CrossRef
    42.Steiner-Lange S, Unte US, Eckstein L, Yang C, Wilson ZA, Schmelzer E, et al. Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant J. 2003;34(4):519–28.PubMed CrossRef
    43.Yang C, Xu Z, Song J, Conner K, Vizcay Barrena G, Wilson ZA. Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell. 2007;19(2):534–48.PubMed PubMedCentral CrossRef
    44.Chaffey N, Cholewa E, Regan S, Sundberg B. Secondary xylem development in Arabidopsis: a model for wood formation. Physiol Plant. 2002;114(4):594–600.PubMed CrossRef
    45.Nieminen KM, Kauppinen L, Helariutta Y. A weed for wood? Arabidopsis as a genetic model for xylem development. Plant Physiol. 2004;135(2):653–9.PubMed PubMedCentral CrossRef
    46.Cheng X, Wang M, Lee HK, Tadege M, Ratet P, Udvardi M, et al. An efficient reverse genetics platform in the model legume Medicago truncatula. New Phytol. 2014;201(3):1065–76.PubMed CrossRef
    47.Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, et al. Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J. 2008;54(2):335–47.PubMed CrossRef
    48.Zhou R, Jackson L, Shadle G, Nakashima J, Temple S, Chen F, et al. Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. Proc Natl Acad Sci U S A. 2010;107(41):17803–8.PubMed PubMedCentral CrossRef
    49.Carpita N, Tierney M, Campbell M. Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Mol Biol. 2001;47(1-2):1–5.PubMed CrossRef
    50.Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell. 2005;17(8):2281–95.PubMed PubMedCentral CrossRef
    51.Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003;31(4), e15.PubMed PubMedCentral CrossRef
    52.Li C, Wong WH. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A. 2001;98(1):31–6.PubMed PubMedCentral CrossRef
    53.Leek JT, Monsen E, Dabney AR, Storey JD. EDGE: extraction and analysis of differential gene expression. Bioinformatics. 2006;22(4):507–8.PubMed CrossRef
    54.Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100(16):9440–5.PubMed PubMedCentral CrossRef
    55.Ramakers C, Ruijter JM, Deprez RH, Moorman AF. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003;339(1):62–6.PubMed CrossRef
    56.Carter SL, Brechbuhler CM, Griffin M, Bond AT. Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics. 2004;20(14):2242–50.PubMed CrossRef
    57.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMed PubMedCentral CrossRef
    58.Nakashima J, Chen F, Jackson L, Shadle G, Dixon RA. Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa): effects on lignin composition in specific cell types. New Phytol. 2008;179(3):738–50.PubMed CrossRef
  • 作者单位:Huanzhong Wang (1)
    Jung Hyun Yang (1)
    Fang Chen (2) (3)
    Ivone Torres-Jerez (2)
    Yuhong Tang (2)
    Mingyi Wang (2)
    Qian Du (1)
    Xiaofei Cheng (2)
    Jiangqi Wen (2)
    Richard Dixon (2) (3)

    1. Department of Plant Science and Landscape Architecture, University of Connecticut, 1390 Storrs Rd., Storrs, CT, 06269, USA
    2. Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
    3. Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Legumes are important to humans by providing food, feed and raw materials for industrial utilizations. Some legumes, such as alfalfa, are potential bioenergy crops due to their high biomass productivity. Global transcriptional profiling has been successfully used to identify genes and regulatory pathways in secondary cell wall thickening in Arabidopsis, but such transcriptome data is lacking in legumes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700