用户名: 密码: 验证码:
Interval model control of human welder’s movement in machine-assisted manual GTAW torch operation
详细信息    查看全文
  • 作者:Ning Huang ; Yukang Liu ; Shujun Chen…
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2016
  • 出版时间:September 2016
  • 年:2016
  • 卷:86
  • 期:1-4
  • 页码:397-405
  • 全文大小:2,143 KB
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Production and Logistics
    Mechanical Engineering
    Computer-Aided Engineering and Design
  • 出版者:Springer London
  • ISSN:1433-3015
  • 卷排序:86
文摘
Torch maneuver skills possessed by a skilled welder typically require a long time to develop. A machine-assisted feedback control system that can stabilize the welder movement would thus be of interest in the manufacturing industry. In this paper, an interval model-based feedback control system is designed to assist the welder to adjust the torch movement for tracking desired speed in manual gas tungsten arc welding (GTAW) process. To this end, an innovative helmet-based manual welding platform is utilized. In this system, vibrators are installed on the helmet to generate vibration sounds to instruct the welder to speed up or slow down the torch movement. The torch movement is monitored by a leap motion sensor. The torch speed is used as the feedback for the control algorithm to determine how to change the vibrations. To design the control algorithm, dynamic experiments are conducted to correlate the arm movement (torch speed) to the vibration control signal. Linear models are first identified and the corresponding linear parameter intervals are obtained. Interval model control algorithm is then implemented. Simulation results reveal that the proposed interval model control algorithm outperforms traditional Proportion Integration Differentiation (PID) controller. Experiments further verified that the welder’s speed is controlled with acceptable accuracy.KeywordsHuman welder movementManual GTAWInterval model controlPID

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700