用户名: 密码: 验证码:
Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications
详细信息    查看全文
  • 作者:Yuming Wang ; Ke Ding ; Baoquan Sun ; Shuit-Tong Lee ; Jiansheng Jie
  • 关键词:two ; dimensional layered materials ; silicon ; heterojunctions ; solar cells ; photodetectors
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:9
  • 期:1
  • 页码:72-93
  • 全文大小:4,044 KB
  • 参考文献:[1]Masuko, K.; Shigematsu, M.; Hashiguchi, T.; Fujishima, D.; Kai, M.; Yoshimura, N.; Yamaguchi, T.; Ichihashi, Y.; Mishima, T.; Matsubara, N. et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 2014, 4, 1433–1435.CrossRef
    [2]Warabisako, T.; Uematsu, T.; Muramatsu, S.; Tsutsui, K.; Ohtsuka, H.; Nagata, Y.; Sakamoto, M. Optimization of thermal processing and device design for high-efficiency c-Si solar cells. Sol. Energy. Mat. Sol. C. 1997, 48, 137–143.CrossRef
    [3]Zhang, F. T.; Han, X. Y.; Lee, S. T.; Sun, B. Q. Heterojunction with organic thin layer for three dimensional high performance hybrid solar cells. J. Mater. Chem. 2012, 22, 5362–5368.CrossRef
    [4]Zhang, F. T.; Song, T.; Sun, B. Q. Conjugated polymersilicon nanowire array hybrid Schottky diode for solar cell application. Nanotechnology 2012, 23, 194006.CrossRef
    [5]Zhang, Y. F.; Zu, F. S.; Lee, S. T.; Liao, L. S.; Zhao, N.; Sun, B. Q. Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells. Adv. Energy Mater. 2014, 4, 1300923.
    [6]Liu, R. Y.; Lee, S. T.; Sun, B. Q. 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv. Mater. 2014, 26, 6007–6012.CrossRef
    [7]Wang, H. P.; Lin, T. Y.; Hsu, C. W.; Tsai, M. L.; Huang, C. H.; Wei, W. R.; Huang, M. Y.; Chien, Y. J.; Yang, P. C.; Liu, C. W. et al. Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions. ACS Nano 2013, 7, 9325–9335.
    [8]Liu, Q. M.; Ishikawa, R.; Funada, S.; Ohki, T.; Ueno, K.; Shirai, H. Highly efficient solution-processed poly(3,4-ethylenedio-xythiophene): Poly(styrenesulfonate)/crystalline–silicon heterojunction solar cells with improved light-induced stability. Adv. Energy Mater. 2015, 5, 1500744.
    [9]Peng, L.; Hu, L. F.; Fang, X. S. Low-dimensional nanostructure ultraviolet photodetectors. Adv. Mater. 2013, 25, 5321–5328.CrossRef
    [10]Sang, L. W.; Liao, M. Y.; Sumiya, M. A comprehensive review of semiconductor ultraviolet photodetectors: From thin film to one-dimensional nanostructures. Sensors 2013, 13, 10482–10518.CrossRef
    [11]Chen, H. Y.; Liu, K. W.; Hu, L. F.; Al-Ghamdi, A. A.; Fang, X. S. New concept ultraviolet photodetectors. Mater. Today 2015, 18, 493–502.CrossRef
    [12]Soci, C.; Zhang, A.; Bao, X. Y.; Kim, H.; Lo, Y.; Wang, D. L. Nanowire photodetectors. J. Nanosci. Nanotechnol. 2010, 10, 1430–1449.CrossRef
    [13]Tian, W.; Lu, H.; Li, L. Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures. Nano Res. 2015, 8, 382–405.CrossRef
    [14]Rogalski, A. Material considerations for third generation infrared photon detectors. Infrared Phys. Techn. 2007, 50, 240–252.CrossRef
    [15]Rogalski, A. Recent progress in infrared detector technologies. Infrared Phys. Techn. 2011, 54, 136–154.CrossRef
    [16]Miao, J. S.; Hu, W. D.; Guo, N.; Lu, Z. Y.; Liu, X. Q.; Liao, L.; Chen, P. P.; Jiang, T.; Wu, S. W.; Ho, J. C. et al. Highresponsivity graphene/InAs nanowire heterojunction nearinfrared photodetectors with distinct photocurrent on/off ratios. Small 2015, 11, 936–942.CrossRef
    [17]Wang, J.; Lee, S. Ge-photodetectors for Si-based optoelectronic integration. Sensors 2011, 11, 696–718.CrossRef
    [18]Hall, D. J.; Buckle, L.; Gordon, N. T.; Giess, J.; Hails, J. E.; Cairns, J. W.; Lawrence, R. M.; Graham, A.; Hall, R. S.; Maltby, C. et al. High-performance long-wavelength HgCdTe infrared detectors grown on silicon substrates. Appl. Phys. Lett. 2004, 85, 2113–2115.CrossRef
    [19]Sellai, A.; Dawson, P. Yield in inhomogeneous PtSi–n-Si Schottky photodetectors. Nucl. Instrum. Meth. A 2006, 567, 372–375.CrossRef
    [20]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRef
    [21]Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRef
    [22]Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907.CrossRef
    [23]Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126.CrossRef
    [24]Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRef
    [25]Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.CrossRef
    [26]Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.CrossRef
    [27]Pesin, D.; MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 2012, 11, 409–416.CrossRef
    [28]Li, X. M.; Zhu, H. W.; Wang, K. L.; Cao, A. Y.; Wei, J. Q.; Li, C. Y.; Jia, Y.; Li, Z.; Li, X.; Wu, D. H. Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 2010, 22, 2743–2748.CrossRef
    [29]Tsai, M. L.; Su, S. H.; Chang, J. K.; Tsai, D. S.; Chen, C. H.; Wu, C. I.; Li, L. J.; Chen, L. J.; He, J. H. Monolayer MoS2 heterojunction solar cells. ACS Nano 2014, 8, 8317–8322.CrossRef
    [30]An, X. H.; Liu, F. Z.; Jung, Y. J.; Kar, S. Tunable graphenesilicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909–916.CrossRef
    [31]Serrano, W.; Pinto, N. J.; Naylor, C. H.; Kybert, N. J.; Johnson, A. T. C., Jr. Facile fabrication of a ultraviolet tunable MoS2/p-Si junction diode. Appl. Phys. Lett. 2015, 106, 193504.CrossRef
    [32]Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.CrossRef
    [33]Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Largescale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRef
    [34]Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.CrossRef
    [35]Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.CrossRef
    [36]Xie, C.; Zhang, X. Z.; Wu, Y. M.; Zhang, X. J.; Zhang, X. W.; Wang, Y.; Zhang, W. J.; Gao, P.; Han, Y. Y.; Jie, J. S. Surface passivation and band engineering: A way toward high efficiency graphene-planar Si solar cells. J. Mater. Chem. A 2013, 1, 8567–8574.CrossRef
    [37]Song, Y.; Li, X. M.; Mackin, C.; Zhang, X.; Fang, W. J.; Palacios, T.; Zhu, H. W.; Kong, J. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells. Nano Lett. 2015, 15, 2104–2110.CrossRef
    [38]Jiao, K. J.; Wang, X. L.; Wang, Y.; Chen, Y. F. Graphene oxide as an effective interfacial layer for enhanced graphene/ silicon solar cell performance. J. Mater. Chem. C 2014, 2, 7715–7721.CrossRef
    [39]Miao, X. C.; Tongay, S.; Petterson, M. K.; Berke, K.; Rinzler, A. G.; Appleton, B. R.; Hebard, A. F. High efficiency graphene solar cells by chemical doping. Nano Lett. 2012, 12, 2745–2750.CrossRef
    [40]Xie, C.; Zhang, X. J.; Ruan, K. Q.; Shao, Z. B.; Dhaliwal, S. S.; Wang, L.; Zhang, Q.; Zhang, X. W.; Jie, J. S. Highefficiency, air stable graphene/Si micro-hole array Schottky junction solar cells. J. Mater. Chem. A 2013, 1, 15348–15354.CrossRef
    [41]Zhang, X. Z.; Xie, C.; Jie, J. S.; Zhang, X. W.; Wu, Y. M.; Zhang, W. J. High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping. J. Mater. Chem. A 2013, 1, 6593–6601.CrossRef
    [42]Luo, L. B.; Xie, C.; Wang, X. H.; Yu, Y. Q.; Wu, C. Y.; Hu, H.; Zhou, K. Y.; Zhang, X. W.; Jie, J. S. Surface plasmon resonance enhanced highly efficient planar silicon solar cell. Nano Energy 2014, 9, 112–120.CrossRef
    [43]Shi, E. Z.; Li, H. B.; Yang, L.; Zhang, L. H.; Li, Z.; Li, P. X.; Shang, Y. Y.; Wu, S. T.; Li, X. M.; Wei, J. Q. et al. Colloidal antireflection coating improves graphene-silicon solar cells. Nano Lett. 2013, 13, 1776–1781.
    [44]Ruan, K. Q.; Ding, K.; Wang, Y. M.; Diao, S. L.; Shao, Z. B.; Zhang, X. J.; Jie, J. S. Flexible graphene/silicon heterojunction solar cells. J. Mater. Chem. A 2015, 3, 14370–14377.CrossRef
    [45]Gao, P.; Ding, K.; Wang, Y.; Ruan, K. Q.; Diao, S. L.; Zhang, Q.; Sun, B. Q.; Jie, J. S. Crystalline Si/graphene quantum dots heterojunction solar cells. J. Phys. Chem. C 2014, 118, 5164–5171.CrossRef
    [46]Hao, L. Z.; Gao, W.; Liu, Y. J.; Han, Z. D.; Xue, Q. Z.; Guo, W. Y.; Zhu, J.; Li, Y. R. High-performance n-MoS2/i-SiO2/p-Si heterojunction solar cells. Nanoscale 2015, 7, 8304–8308.CrossRef
    [47]Lv, P.; Zhang, X. J.; Zhang, X. W.; Deng, W.; Jie, J. S. High-sensitivity and fast-response graphene/crystalline silicon Schottky junction-based near-IR photodetectors. IEEE Electr. Device L. 2013, 34, 1337–1339.CrossRef
    [48]Zeng, L. H.; Xie, C.; Tao, L. L.; Long, H.; Tang, C. Y.; Tsang, Y. H.; Jie, J. S. Bilayer graphene based surface passivation enhanced nano structured self-powered near-infrared photodetector. Opt. Express 2015, 23, 4839–4846.CrossRef
    [49]Amirmazlaghani, M.; Raissi, F.; Habibpour, O.; Vukusic, J.; Stake, J. Graphene-Si Schottky IR detector. IEEE J. Quantum Elect. 2013, 49, 589–594.CrossRef
    [50]Wang, X. M.; Cheng, Z. Z.; Xu, K.; Tsang, H. K.; Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888–891.CrossRef
    [51]Li, Y.; Xu, C. Y.; Wang, J. Y.; Zhen, L. Photodiode-like behavior and excellent photoresponse of vertical Si/monolayer MoS2 heterostructures. Sci. Rep. 2014, 4, 7186.CrossRef
    [52]Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun, Z.; Lee, S. T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, highdetectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919.CrossRef
    [53]Yuan, X.; Tang, L.; Liu, S. S.; Wang, P.; Chen, Z. G.; Zhang, C.; Liu, Y. W.; Wang, W. Y.; Zou, Y. C.; Liu, C. et al. Arrayed van der Waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy. Nano Lett. 2015, 15, 3571–3577.CrossRef
    [54]Yao, J. D.; Shao, J. M.; Wang, Y. X.; Zhao, Z. R.; Yang, G. W. Ultra
    oadband and high response of the Bi2Te3–Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 2015, 7, 12535–12541.CrossRef
    [55]Aberle, A. G. Overview on SiN surface passivation of crystalline silicon solar cells. Sol. Energ. Mat. Sol. C. 2001, 65, 239–248.CrossRef
    [56]Schmidt, J.; Merkle, A.; Brendel, R.; Hoex, B.; Van de Sanden, M. C. M.; Kessels, W. M. M. Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3. Prog. Photovoltaics 2008, 16, 461–466.CrossRef
    [57]Mulligan, W. P.; Rose, D. H.; Cudzinovic, M. J.; De Ceuster, D. M.; McIntosh, K. R.; Smith, D. D.; Swanson, R. M. Manufacture of solar cells with 21% efficiency. In Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 2004, p 387.
    [58]Oh, J.; Yuan, H. C.; Branz, H. M. An 18.2%-efficient blacksilicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol. 2012, 7, 743–748.CrossRef
    [59]Dan, Y. P.; Seo, K.; Takei, K.; Meza, J. H.; Javey, A.; Crozier, K. B. Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires. Nano Lett. 2011, 11, 2527–2532.CrossRef
    [60]Nemanick, E. J.; Hurley, P. T.; Brunschwig, B. S.; Lewis, N. S. Chemical and electrical passivation of silicon (111) surfaces through functionalization with sterically hindered alkyl groups. J. Phys. Chem. B 2006, 110, 14800–14808.CrossRef
    [61]Maldonado, S.; Knapp, D.; Lewis, N. S. Near-ideal photodiodes from sintered gold nanoparticle films on methyl-terminated Si(111) surfaces. J. Am. Chem. Soc. 2008, 130, 3300–3301.CrossRef
    [62]Lin, J. H.; Zeng, J. J.; Lin, Y. J. Electronic transport for graphene/n-type Si Schottky diodes with and without H2O2 treatment. Thin Solid Films 2014, 550, 582–586.CrossRef
    [63]Yang, L. F.; Yu, X. G.; Xu, M. S.; Chen, H. Z.; Yang, D. R. Interface engineering for efficient and stable chemicaldoping-free graphene-on-silicon solar cells by introducing a graphene oxide interlayer. J. Mater. Chem. A 2014, 2, 16877–16883.CrossRef
    [64]Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 2012, 6, 105–110.CrossRef
    [65]Ihm, K.; Lim, J. T.; Lee, K. J.; Kwon, J. W.; Kang, T. H.; Chung, S.; Bae, S.; Kim, J. H.; Hong, B. H.; Yeom, G. Y. Number of graphene layers as a modulator of the opencircuit voltage of graphene-based solar cell. Appl. Phys. Lett. 2010, 97, 032113.CrossRef
    [66]Wu, Y. M.; Zhang, X. Z.; Jie, J. S.; Xie, C.; Zhang, X. W.; Sun, B. Q.; Wang, Y.; Gao, P. Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells. J. Phys. Chem. C 2013, 117, 11968–11976.CrossRef
    [67]Kasry, A.; Kuroda, M. A.; Martyna, G. J.; Tulevski, G. S.; Bol, A. A. Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes. ACS Nano 2010, 4, 3839–3844.CrossRef
    [68]Fan, G. F.; Zhu, H. W.; Wang, K. L.; Wei, J. Q.; Li, X. M.; Shu, Q. K.; Guo, N.; Wu, D. H. Graphene/silicon nanowire Schottky junction for enhanced light harvesting. ACS Appl. Mater. Interfaces 2011, 3, 721–725.CrossRef
    [69]Wang, Y. S.; Chen, C. Y.; Fang, X.; Li, Z. P.; Qiao, H.; Sun, B. Q.; Bao, Q. L. Top-grid monolayer graphene/Si Schottkey solar cell. J. Solid State Chem. 2015, 224, 102–106.CrossRef
    [70]Feng, T. T.; Xie, D.; Lin, Y. X.; Zang, Y. Y.; Ren, T. L.; Song, R.; Zhao, H. M.; Tian, H.; Li, X.; Zhu, H. W. et al. Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate. Appl. Phys. Lett. 2011, 99, 233505.CrossRef
    [71]Liu, X.; Zhang, X. W.; Yin, Z. G.; Meng, J. H.; Gao, H. L.; Zhang, L. Q.; Zhao, Y. J.; Wang, H. L. Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles. Appl. Phys. Lett. 2014, 105, 183901.CrossRef
    [72]Ho, P. H.; Liou, Y. T.; Chuang, C. H.; Lin, S. W.; Tseng, C. Y.; Wang, D. Y.; Chen, C. C.; Hung, W. Y.; Wen, C. Y.; Chen, C. W. Self-crack-filled graphene films by metallic nanoparticles for high-performance graphene heterojunction solar cells. Adv. Mater. 2015, 27, 1724–1729.CrossRef
    [73]Yang, L. F.; Yu, X. G.; Hu, W. D.; Wu, X. L.; Zhao, Y.; Yang, D. R. An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts. ACS Appl. Mater. Interfaces 2015, 7, 4135–4141.CrossRef
    [74]Ho, P. H.; Lee, W. C.; Liou, Y. T.; Chiu, Y. P.; Shih, Y. S.; Chen, C. C.; Su, P. Y.; Li, M. K.; Chen, H. L.; Liang, C. T. et al. Sunlight-activated graphene-heterostructure transparent cathodes: Enabling high-performance n-graphene/p-Si Schottky junction photovoltaics. Energy Environ. Sci. 2015, 8, 2085–2092.CrossRef
    [75]Yu, X. G.; Yang, L. F.; Lv, Q. M.; Xu, M. S.; Chen, H. Z.; Yang, D. R. The enhanced efficiency of graphene-silicon solar cells by electric field doping. Nanoscale 2015, 7, 7072–7077.CrossRef
    [76]Garnett, E.; Yang, P. D. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087.CrossRef
    [77]Tsakalakos, L.; Balch, J.; Fronheiser, J.; Shih, M. Y.; LeBoeuf, S. F.; Pietrzykowski, M.; Codella, P. J.; Korevaar, B. A.; Sulima, O. V.; Rand, J. et al. Strong broadband optical absorption in silicon nanowire films. J. Nanophoton. 2007, 1, 013552.CrossRef
    [78]Zhang, A.; Kim, H.; Cheng, J.; Lo, Y. H. Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors. Nano Lett. 2010, 10, 2117–2120.CrossRef
    [79]Xie, C.; Lv, P.; Nie, B.; Jie, J. S.; Zhang, X. W.; Wang, Z.; Jiang, P.; Hu, Z. Z.; Luo, L. B.; Zhu, Z. F. et al. Monolayer graphene film/silicon nanowire array Schottky junction solar cells. Appl. Phys. Lett. 2011, 99, 133113.CrossRef
    [80]Schaadt, D. M.; Feng, B.; Yu, E. T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 2005, 86, 063106.CrossRef
    [81]Wang, L.; Lu, M.; Wang, X. G.; Yu, Y. Q.; Zhao, X. Z.; Lv, P.; Song, H. W.; Zhang, X. W.; Luo, L. B.; Wu, C. Y. et al. Tuning the p-type conductivity of ZnSe nanowiresvia silver doping for rectifying and photovoltaic device applications. J. Mater. Chem. A 2013, 1, 1148–1154.CrossRef
    [82]Zhang, X. W.; Zhang, X. J.; Zhang, X. Z.; Zhang, Y. P.; Bian, L.; Wu, Y. M.; Xie, C.; Han, Y. Y.; Wang, Y.; Gao, P. et al. ZnSe nanoribbon/Si nanowire p–n heterojunction arrays and their photovoltaic application with graphene transparent electrodes. J. Mater. Chem. 2012, 22, 22873–22880.CrossRef
    [83]Pagliaro, M.; Ciriminna, R.; Palmisano, G. Flexible solar cells. ChemSusChem 2008, 1, 880–891.CrossRef
    [84]Ichikawa, Y.; Yoshida, T.; Hama, T.; Sakai, H.; Harashima, K. Production technology for amorphous silicon-based flexible solar cells. Sol. Energ. Mat. Sol. C. 2001, 66, 107–115.CrossRef
    [85]Wang, S.; Weil, B. D.; Li, Y. B.; Wang, K. X.; Garnett, E.; Fan, S. H.; Cui, Y. Large-area free-standing ultrathin singlecrystal silicon as processable materials. Nano Lett. 2013, 13, 4393–4398.CrossRef
    [86]Zhang, M. L.; Peng, K. Q.; Fan, X.; Jie, J. S.; Zhang, R. Q.; Lee, S. T.; Wong, N. B. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J. Phys. Chem. C 2008, 112, 4444–4450.CrossRef
    [87]Hochbaum, A. I.; Fan, R.; He, R. R.; Yang, P. D. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 2005, 5, 457–460.CrossRef
    [88]Wang, Y.; Zhang, X. J.; Gao, P.; Shao, Z. B.; Zhang, X. W.; Han, Y. Y.; Jie, J. S. Air heating approach for multilayer etching and roll-to-roll transfer of silicon nanowire arrays as SERS substrates for high sensitivity molecule detection. ACS Appl. Mater. Interfaces 2014, 6, 977–984.CrossRef
    [89]Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.CrossRef
    [90]Yavari, F.; Kritzinger, C.; Gaire, C.; Song, L.; Gulapalli, H.; Borca-Tasciuc, T.; Ajayan, P. M.; Koratkar, N. Tunable bandgap in graphene by the controlled adsorption of water molecules. Small 2010, 6, 2535–2538.CrossRef
    [91]Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L. H.; Song, L.; Alemany, L. B.; Zhan, X. B.; Gao, G. H. et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012, 12, 844–849.CrossRef
    [92]Mandal, B.; Sarkar, S.; Sarkar, P. Exploring the electronic structure of graphene quantum dots. J. Nanopart. Res. 2012, 14, 1317.CrossRef
    [93]Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Chaotic Dirac billiard in graphene quantum dots. Science 2008, 320, 356–358.CrossRef
    [94]Zhang, Z. P; Zhang, J.; Chen, N.; Qu, L. T. Graphene quantum dots: An emerging material for energy-related applications and beyond. Energy Environ. Sci. 2012, 5, 8869–8890.CrossRef
    [95]Williams, K. J.; Nelson, C. A.; Yan, X.; Li, L. S.; Zhu, X. Y. Hot electron injection from graphene quantum dots to TiO2. ACS Nano 2013, 7, 1388–1394.CrossRef
    [96]Ayhan, M. E.; Kalita, G.; Kondo, M.; Tanemura, M. Photoresponsivity of silver nanoparticles decorated graphenesilicon Schottky junction. RSC Adv. 2014, 4, 26866–26871.CrossRef
    [97]Luo, L. B.; Zeng, L. H.; Xie, C.; Yu, Y. Q.; Liang, F. X.; Wu, C. Y.; Wang, L.; Hu, J. G. Light trapping and surface plasmon enhanced high-performance NIR photodetector. Sci. Rep. 2014, 4, 3914.
    [98]Zhu, M.; Zhang, L.; Li, X. M.; He, Y. J.; Li, X.; Guo, F. M.; Zang, X. B.; Wang, K. L.; Xie, D.; Li, X. H. et al. TiO2 enhanced ultraviolet detection based on a graphene/Si Schottky diode. J. Mater. Chem. A 2015, 3, 8133–8138.
    [99]Xia, F. N.; Mueller, T.; Golizadeh-Mojarad, R.; Freitag, M.; Lin, Y. M.; Tsang, J.; Perebeinos, V.; Avouris, P. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 2009, 9, 1039–1044.CrossRef
    [100]Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.CrossRef
    [101]Gan, X. T.; Shiue, R. J.; Gao, Y. D.; Meric, I.; Heinz, T. F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883–887.CrossRef
    [102]Pospischil, A.; Humer, M.; Furchi, M. M.; Bachmann, D.; Guider, R.; Fromherz, T.; Mueller, T. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 2013, 7, 892–896.CrossRef
    [103]Meric, I.; Han, M. Y.; Young, A. F.; Ozyilmaz, B.; Kim, P.; Shepard, K. L. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008, 3, 654–659.CrossRef
    [104]Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRef
    [105]Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.CrossRef
    [106]Chen, D. Y.; Chen, W. X.; Ma, L.; Ji, G.; Chang, K.; Lee, J. Y. Graphene-like layered metal dichalcogenide/graphene composites: Synthesis and applications in energy storage and conversion. Mater. Today 2014, 17, 184–193.CrossRef
    [107]Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.CrossRef
    [108]Shanmugam, M.; Durcan, C. A.; Yu, B. Layered semiconductor molybdenum disulfide nanomembrane based Schottky-barrier solar cells. Nanoscale 2012, 4, 7399–7405.CrossRef
    [109]Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 2011, 5, 7707–7712.CrossRef
    [110]Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRef
    [111]Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.CrossRef
    [112]Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13, 3664–3670.CrossRef
    [113]Ma, D. L.; Shi, J. P.; Ji, Q. Q.; Chen, K.; Yin, J. B.; Lin, Y. W.; Zhang, Y.; Liu, M. X.; Feng, Q. L.; Song, X. L. et al. A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Res. 2015, 8, 3662–3672.CrossRef
    [114]Park, M. J.; Min, J. K.; Yi, S. G.; Kim, J. H.; Oh, J.; Yoo, K. H. Near-infrared photodetectors utilizing MoS2-based heterojunctions. J. Appl. Phys. 2015, 118, 044504.CrossRef
    [115]Lin, Y. C.; Zhang, W. J.; Huang, J. K.; Liu, K. K.; Lee, Y. H.; Liang, C. T.; Chu, C. W.; Li, L. J. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 2012, 4, 6637–6641.CrossRef
    [116]Ling, Z. P.; Yang, R.; Chai, J. W.; Wang, S. J.; Leong, W. S.; Tong, Y.; Lei, D.; Zhou, Q.; Gong, X.; Chi, D. Z. et al. Large-scale two-dimensional MoS2 photodetectors by magnetron sputtering. Opt. Express 2015, 23, 13580–13586.CrossRef
    [117]Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.CrossRef
    [118]Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.CrossRef
    [119]Tsai, D. S.; Liu, K. K.; Lien, D. H.; Tsai, M. L.; Kang, C. F.; Lin, C. A.; Li, L. J.; He, J. H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905–3911.CrossRef
    [120]Xu, H.; Wu, J. X.; Feng, Q. L.; Mao, N. N.; Wang, C. M.; Zhang, J. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small 2014, 10, 2300–2306.CrossRef
    [121]Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575–6581.
    [122]Liu, S. S.; Yuan, X.; Wang, P.; Chen, Z. G.; Tang, L.; Zhang, E. Z.; Zhang, C.; Liu, Y. W.; Wang, W. Y.; Liu, C. et al. Controllable growth of vertical heterostructure GaTexSe1–x/Si by molecular beam epitaxy. ACS Nano 2015, 9, 8592–8598.CrossRef
    [123]Yuan, X.; Tang, L.; Wang, P.; Chen, Z. G.; Zou, Y. C.; Su, X. F.; Zhang, C.; Liu, Y. W.; Wang, W. Y.; Liu, C. et al. Wafer-scale arrayed p–n junctions based on few-layer epitaxial GaTe. Nano Res. 2015, 8, 3332–3341.CrossRef
    [124]Zhang, H. B.; Li, H.; Shao, J. M.; Li, S. W.; Bao, D. H.; Yang, G. W. High-performance Bi2Te3-based topological insulator film magnetic field detector. ACS Appl. Mater. Interfaces 2013, 5, 11503–11508.CrossRef
    [125]Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.CrossRef
    [126]Zheng, K.; Luo, L. B.; Zhang, T. F.; Liu, Y. H.; Yu, Y. Q.; Lu, R.; Qiu, H. L.; Li, Z. J.; Andrew Huang, J. C. Optoelectronic characteristics of a near infrared light photodetector based on a topological insulator Sb2Te3 film. J. Mater. Chem. C 2015, 3, 9154–9160.CrossRef
    [127]Lopez-Sanchez, O.; Alarcon Llado, E.; Koman, V.; Fontcuberta i Morral, A.; Radenovic, A.; Kis, A. Light generation and harvesting in a van der Waals heterostructure. ACS Nano 2014, 8, 3042–3048.CrossRef
    [128]Ding, Q.; Meng, F.; English, C. R.; Cabán-Acevedo, M.; Shearer, M. J.; Liang, D.; Daniel, A. S.; Hamers, R. J.; Jin, S. Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2. J. Am. Chem. Soc. 2014, 136, 8504–8507.CrossRef
    [129]Zhu, M.; Li, X. M.; Chung, S.; Zhao, L. Y.; Li, X.; Zang, X. B.; Wang, K. L.; Wei, J. Q.; Zhong, M. L.; Zhou, K. et al. Photo-induced selective gas detection based on reduced graphene oxide/Si Schottky diode. Carbon 2015, 84, 138–145.CrossRef
  • 作者单位:Yuming Wang (1)
    Ke Ding (1)
    Baoquan Sun (1)
    Shuit-Tong Lee (1)
    Jiansheng Jie (1)

    1. Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
As one of the most important semiconductor materials, silicon (Si) has been widely used in current energy and optoelectronic devices, such as solar cells and photodetectors. However, the traditional Si p–n junction solar cells need complicated fabrication processes, leading to the high cost of Si photovoltaic devices. The wide applications of Si-based photodetectors are also hampered by their low sensitivity to ultraviolet and infrared light. Recently, two-dimensional (2D) layered materials have emerged as a new material system with tremendous potential for future energy and optoelectronic applications. The combination of Si with 2D layered materials represents an innovative approach to construct high-performance optoelectronic devices by harnessing the complementary advantages of both materials. In this review, we summarize the recent advances in 2D layered material/Si heterojunctions and their applications in photovoltaic and optoelectronic devices. Finally, the outlook and challenges of 2D layered material/Si heterojunctions for high-performance device applications are presented.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700