用户名: 密码: 验证码:
Effects of reaction reversibility on ignition and flame propagation
详细信息    查看全文
  • 作者:Cong Li (1) (3)
    Yunchao Wu (1) (3)
    Zheng Chen (1) (2)
  • 关键词:Ignition ; Spherical flame propagation ; Reversible reaction ; Markstein length ; Lewis number
  • 刊名:Journal of Mathematical Chemistry
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:53
  • 期:1
  • 页码:386-401
  • 全文大小:572 KB
  • 参考文献:1. B. Lewis, G. Von Elbe, / Combustion Flames and Explosive of Gases, 2nd edn. (Academic Press, New York, 1961)
    2. F.A. Williams, / Combustion Theory, 2nd edn. (Benjamin-Cummins, Menlo Park, 1985)
    3. Y.B. Zeldovich, / The Mathematical Theory of Combustion and Explosions (Consultants Bureau, New York, 1985) CrossRef
    4. B. Deshaies, G. Joulin, Combust. Sci. Technol. 37, 99 (1984) CrossRef
    5. M.L. Frankel, G.I. Sivashinsky, Combust. Sci. Technol. 31, 131 (1983) CrossRef
    6. P.D. Ronney, G.I. Sivashinsky, SIAM J. Appl. Math. 49, 1029 (1989) CrossRef
    7. L.T. He, Combust. Theory Model. 4, 159 (2000) CrossRef
    8. M. Matalon, C. Cui, J.K. Bechtold, J. Fluid Mech. 487, 179 (2003) CrossRef
    9. J.K. Bechtold, C. Cui, M. Matalon, Proc. Combust. Inst. 30, 177 (2005) CrossRef
    10. Z. Chen, Y. Ju, Combust. Theory Model. 11, 427 (2007) CrossRef
    11. Z. Chen, M.P. Burke, Y. Ju, Proc. Combust. Inst. 33, 1219 (2011) CrossRef
    12. U. Maas, J. Warnatz, Combust. Flame 74, 53 (1988) CrossRef
    13. A. Frendi, M. Sibulkin, Combust. Sci. Technol. 73, 395 (1990) CrossRef
    14. H.J. Kim, S.H. Chung, C.H. Sohn, KSME Int. J. 18, 838 (2004)
    15. W.K. Zhang, Z. Chen, W.J. Kong, Combust. Flame 159, 151 (2012) CrossRef
    16. M. Champion, B. Deshaies, G. Joulin, K. Kinoshita, Combust. Flame 65, 319 (1986) CrossRef
    17. Y. Ko, R.W. Anderson, V.S. Arpaci, Combust. Flame 83, 75 (1991) CrossRef
    18. A.P. Kelley, G. Jomaas, C.K. Law, Combust. Flame 156, 1006 (2009) CrossRef
    19. P.D. Ronney, Opt. Eng. 33, 510 (1994) CrossRef
    20. H. Zhang, Z. Chen, Combust. Flame 158, 1520 (2011) CrossRef
    21. H. Zhang, P. Guo, Z. Chen, Proc. Combust. Inst. 34, 3267 (2013) CrossRef
    22. J.W. Dold, Combust. Theory Model. 11, 909 (2007) CrossRef
    23. V.V. Gubernov, H.S. Sidhu, G. Mercer, A.V. Kolobov, A.A. Polezhaev, J. Math. Chem. 44, 816 (2008) CrossRef
    24. G.J. Sharpe, Combust. Theory Model. 12, 717 (2008) CrossRef
    25. V. Gubernov, A.V. Kolobov, A.A. Polezhaev, H.S. Sidhu, G. Mercer, Proc. R Soc. A 466, 2747 (2010) CrossRef
    26. V.V. Gubernov, A.V. Kolobov, A.A. Polezhaev, H.S. Sidhu, Combust. Theory Model. 15, 385 (2011) CrossRef
    27. G.J. Sharpe, S.A.E.G. Falle, Combust. Flame 158, 925 (2011) CrossRef
    28. V.V. Gubernov, A.V. Kolobov, A.A. Polezhaev, H.S. Sidhu, Combust. Flame 160, 1060 (2013) CrossRef
    29. V.N. Kurdyumov, D. Fernandez-Galisteo, Combust. Flame 159, 3110 (2012) CrossRef
    30. H. Zhang, Z. Chen, Combust. Theory Model. 17, 682 (2013) CrossRef
    31. J. Daou, Combust. Theory Model. 12, 349 (2008) CrossRef
    32. J. Daou, Combust. Theory Model. 13, 189 (2009) CrossRef
    33. J. Daou, Combust. Theory Model. 15, 437 (2011) CrossRef
    34. C.K. Law, / Combustion Physics (Cambridge University Press, Cambridge, 2006) CrossRef
    35. Y. Wu, Z. Chen, Acta Mech. Sin. 28, 359 (2012) CrossRef
    36. Z. Chen, Combust. Flame 158, 291 (2011) CrossRef
    37. A.P. Kelley, C.K. Law, Combust. Flame 156, 1844 (2009) CrossRef
    38. Z. Chen, X. Gou, Y. Ju, Combust. Sci. Technol. 182, 124 (2010) CrossRef
  • 作者单位:Cong Li (1) (3)
    Yunchao Wu (1) (3)
    Zheng Chen (1) (2)

    1. State Key Laboratory for Turbulence and Complex Systems (SKLTCS), Department of Mechanics and Engineering Science, College of Engineering, Peking University, Room 408, Beijing, 100871, China
    3. Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA
    2. Department of Aeronautics and Astronautics, College of Engineering, Peking University, Beijing, 100871, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Theoretical and Computational Chemistry
    Mathematical Applications in Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8897
文摘
Chemical reactions in high-temperature combustion are reversible and reaction reversibility might have a great impact on fundamental combustion processes such as ignition and flame propagation. In this study, ignition and propagation of spherical flames with a reversible reaction are analyzed using the large-activation-energy asymptotic method. Analytical correlations are derived to describe the change of spherical flame propagation speed and flame temperature with flame radius. The reversibility parameter, fuel Lewis number, and ignition power are included in these correlations. These correlations can predict different flame regimes and transitions among the ignition kernel, flame ball, propagating spherical flame, and planar flame. Therefore, based on these correlations spherical flame propagation and initiation are then investigated with the emphasis on assessing the impact of reaction reversibility. It is found that similar to heat loss, reaction reversibility can greatly affect spherical flame propagation speed, Markstein length, flame ball radius, minimum ignition power, and critical ignition radius. Moreover, it is demonstrated that the influence of reaction reversibility depends on fuel Lewis number.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700