用户名: 密码: 验证码:
Cytosolic Ca2+ as a multifunctional modulator is required for spermiogenesis in Ascaris suum
详细信息    查看全文
  • 作者:Yunlong Shang (1) (2)
    Lianwan Chen (1)
    Zhiyu Liu (1) (2)
    Xia Wang (1)
    Xuan Ma (1)
    Long Miao (1)
  • 关键词:spermiogenesis ; Ca2+ ; major sperm protein ; Ascaris suum
  • 刊名:Protein & Cell
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:4
  • 期:6
  • 页码:456-466
  • 全文大小:977KB
  • 参考文献:1. Abbas, M., and Foor, W.E. (1978). Ascaris suum: free amino acids and proteins in the pseudocoelom, seminal vesicle, and glandular vas deferens. Exp Parasitol 45, 263鈥?73. CrossRef
    2. Bandyopadhyay, J., Lee, J., Lee, J.I., Yu, J.R., Jee, C., Cho, J.H., Jung, S., Lee, M.H., Zannoni, S., Singson, A., et al. (2002). Calcineurin, a calcium/calmodulin-dependent protein phosphatase, is involved in movement, fertility, egg laying, and growth in Caeno rhabditis elegans. Mol Biol Cell 13, 3281鈥?293. CrossRef
    3. Ben-Aharon, I., Brown, P.R., Etkovitz, N., Eddy, E.M., and Shalgi, R. (2005). The expression of calpain 1 and calpain 2 in spermatogenic cells and spermatozoa of the mouse. Reproduction 129, 435鈥?42. CrossRef
    4. Bendahmane, M., Lynch, C., 2nd, and Tulsiani, D.R. (2001). Calmodulin signals capacitation and triggers the agonist-induced acrosome reaction in mouse spermatozoa. Arch Biochem Biophys 390, 1鈥?. CrossRef
    5. Berridge, M.J. (2007). Calcium signalling, a spatiotemporal phenomenon. In New Comprehensive Biochemistry, K. Joachim, and M. Marek, eds. (Elsevier), pp. 485鈥?02.
    6. Berrios, J., Osses, N., Opazo, C., Arenas, G., Mercado, L., Benos, D.J., and Reyes, J.G. (1998). Intracellular Ca2+ homeostasis in rat round spermatids. Biol Cell 90, 391鈥?98.
    7. Blas, G.A.D., Roggero, C.M., Tomes, C.N., and Mayorga, L.S. (2005). Dynamics of SNARE assembly and disassembly during sperm acrosomal exocytosis. Plos Biol 3, e323. CrossRef
    8. Breitbart, H. (2002). Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Mol Cell Endocrinol 187, 139鈥?44. CrossRef
    9. Castillo Bennett, J., Roggero, C.M., Mancifesta, F.E., and Mayorga, L.S. (2010). Calcineurin-mediated dephosphorylation of synaptotagmin vi is necessary for acrosomal exocytosis. J Biol Chem 285, 26269鈥?6278. CrossRef
    10. Estrada, M., C谩rdenas, C., Liberona, J.L., Carrasco, M.A., Mignery, G.A., Allen, P.D., and Jaimovich, E. (2001). Calcium transients in 1B5 myotubes lacking ryanodine receptors are related to inositol trisphosphate receptors. J Biol Chem 276, 22 868鈥?2874. CrossRef
    11. Fraire-Zamora, J.J., Broitman-Maduro, G., Maduro, M., and Cardullo, R.A. (2011). Evidence for phosphorylation in the MSP cytoskeletal filaments of amoeboid spermatozoa. Int J Biochem Mol Biol 2, 263鈥?73.
    12. Griffiths, E.J., and Rutter, G.A. (2009). Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Arch Biochem Biophys 1787, 1324鈥?333. CrossRef
    13. Gulbransen, B.D., Bashashati, M., Hirota, S.A., Gui, X., Roberts, J.A., MacDonald, J.A., Muruve, D.A., McKay, D.M., Beck, P.L., Mawe, G.M., et al. (2012). Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med 18, 600鈥?04. CrossRef
    14. Italiano, J.E., Roberts, T.M., Stewart, M., and Fontana, C.A. (1996). Reconstitution in vitro of the motile apparatus from the amoeboid sperm of Ascaris shows that filament assembly and bundling move membranes. Cell 84, 105鈥?14. CrossRef
    15. Kaupp, U.B., Kashikar, N.D., and Weyand, I. (2008). Mechanisms of sperm chemotaxis. Annu Rev Physiol 7 0, 93鈥?17. CrossRef
    16. Kirichok, Y., Navarro, B., and Clapham, D.E. (2006). Whole-cell patchclamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439, 737鈥?40. CrossRef
    17. Krebs, J., and Heizmann, C.W. (2007). Calcium-binding proteins and the EF-hand principle. In New Comprehensive Biochemistry, K. Joachim, and M. Marek, eds. (Elsevier), pp. 51鈥?3.
    18. L鈥橦ernault, S.W. (2009). The genetics and cell biology of spermatogenesis in the nematode C. elegans. Mol Cell Endocrinol 306, 59鈥?5. CrossRef
    19. LeClaire, L.L., 3rd, Stewart, M., and Roberts, T.M. (2003). A 48 kDa integral membrane phosphoprotein orchestrates the cytoskeletal dynamics that generate amoeboid cell motility in Ascaris sperm. J Cell Sci 116, 2655鈥?663. CrossRef
    20. Li, R., and Gundersen, G.G. (2008). Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nature reviews. Mol Cell Biol 9, 860鈥?73.
    21. Ma, X., Zhao, Y., Sun, W., Shimabukuro, K., and Miao, L. (2012). Transformation: how do nematode sperm become activated and crawl? Protein & Cell 3, 755鈥?61. CrossRef
    22. Miao, L., Vanderlinde, O., Liu, J., Grant, R.P., Wouterse, A., Shimabukuro, K., Philipse, A., Stewart, M., and Roberts, T.M. (2008). The role of filament-packing dynamics in powering amoeboid cell motility. Proc Natl Acad Sci U S A 105, 5390鈥?395. CrossRef
    23. Miao, L., Vanderlinde, O., Stewart, M., and Roberts, T.M. (2003). Retraction in amoeboid cell motility powered by cytoskeletal dynamics. Science 302, 1405鈥?407. CrossRef
    24. Roberts, T.M. (2005). Major sperm protein. Curr Biol 15, R153鈥?53. CrossRef
    25. Roberts, T.M., Salmon, E.D., and Stewart, M. (1998). Hydrostatic pressure shows that lamellipodial motility in Ascaris sperm requires membrane-associated major sperm protein filament nucleation and elongation. J Cell Biol 140, 367鈥?75. CrossRef
    26. Roberts, T.M., and Stewart, M. (2000). Acting like actin. The dynamics of the nematode major sperm protein (msp) cytoskeleton indicate a push-pull mechanism for amoeboid cell motility. J Cell Biol 149, 7鈥?2. CrossRef
    27. Shakes, D.C., and Ward, S. (1989). Initiation of spermiogenesis in C. elegans: A pharmacological and genetic analysis. Dev Biol 134, 189鈥?00. CrossRef
    28. Shimabukuro, K., Noda, N., Stewart, M., and Roberts, T.M. (2011). Reconstitution of amoeboid motility in vitro identifies a motorindependent mechanism for cell body retraction. Curr Biol 21, 1727鈥?731. CrossRef
    29. Si, Y., and Olds-Clarke, P. (2000). Evidence for the involvement of calmodulin in mouse sperm capacitation. Biol Reprod 62, 1231鈥?239. CrossRef
    30. Smith, J.R., and Stanfield, G.M. (2011). TRY-5 is a sperm-activating protease in caenorhabditis elegans seminal fl uid. PLoS Genet 7, e1002375. CrossRef
    31. Sperry, A.O. (2012). The dynamic cytoskeleton of the developing male germ cell. Biol Cell 104, 297鈥?05. CrossRef
    32. Teves, M.E., Guidobaldi, H.A., Unates, D.R., Sanchez, R., Miska, W., Publicover, S.J., Morales Garcia, A.A., and Giojalas, L.C. (2009). Molecular mechanism for human sperm chemotaxis mediated by progesterone. PLoS One 4, e8211. CrossRef
    33. Ward, S., Hogan, E., and Nelson, G.A. (1983). The initiation of spermiogenesis in the nematode Caenorhabditis elegans. Dev Biol 98, 70鈥?9. CrossRef
    34. Washington, N.L., and Ward, S. (2006). FER-1 regulates Ca2+ -mediated membrane fusion during C. elegans spermatogenesis. J Cell Sci 119, 2552鈥?562. CrossRef
    35. Yi, K., Buttery, S.M., Stewart, M., and Roberts, T.M. (2007). A Ser/Thr kinase required for membrane-associated assembly of the major sperm protein motility apparatus in the amoeboid sperm of Ascaris. Mol Biol Cell 18, 1816鈥?825. CrossRef
    36. Yi, K., Wang, X., Emmett, M.R., Marshall, A.G., Stewart, M., and Roberts, T.M. (2009). Dephosphorylation of major sperm protein (MSP) fiber protein 3 by protein phosphatase 2A during cell body retraction in the MSP-based amoeboid motility of Ascaris sperm. Mol Biol Cell 20, 3200鈥?208. CrossRef
    37. Zeng, H.T., and Tulsiani, D.R. (2003). Calmodulin antagonists differentially affect capacitation-associated protein tyrosine phosphorylation of mouse sperm components. J Cell Sci 116, 1981鈥?989. CrossRef
    38. Zhao, Y., Sun, W., Zhang, P., Chi, H., Zhang, M.J., Song, C.Q., Ma, X., Shang, Y., Wang, B., Hu, Y., et al. (2012). Nematode sperm maturation triggered by protease involves sperm-secreted serine protease inhibitor (Serpin). Proc Natl Acad Sci U S A 109, 1542鈥?547. CrossRef
  • 作者单位:Yunlong Shang (1) (2)
    Lianwan Chen (1)
    Zhiyu Liu (1) (2)
    Xia Wang (1)
    Xuan Ma (1)
    Long Miao (1)

    1. Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
    2. University of Chinese Academy of Sciences, Beijing, 100049, China
文摘
The dynamic polar polymers actin filaments and microtubules are usually employed to provide the structural basis for establishing cell polarity in most eukaryotic cells. Radially round and immotile spermatids from nematodes contain almost no actin or tubulin, but still have the ability to break symmetry to extend a pseudopod and initiate the acquisition of motility powered by the dynamics of cytoskeleton composed of major sperm protein (MSP) during spermiogenesis (sperm activation). However, the signal transduction mechanism of nematode sperm activation and motility acquisition remains poorly understood. Here we show that Ca2+ oscillations induced by the Ca2+ release from intracellular Ca2+ store through inositol (1,4,5)-trisphosphate receptor are required for Ascaris suum sperm activation. The chelation of cytosolic Ca2+ suppresses the generation of a functional pseudopod, and this suppression can be relieved by introducing exogenous Ca2+ into sperm cells. Ca2+ promotes MSP-based sperm motility by increasing mitochondrial membrane potential and thus the energy supply required for MSP cytoskeleton assembly. On the other hand, Ca2+ promotes MSP disassembly by activating Ca2+/calmodulin-dependent serine/threonine protein phosphatase calcineurin. In addition, Ca2+/camodulin activity is required for the fusion of sperm-specifi c membranous organelle with the plasma membrane, a regulated exocytosis required for sperm motility. Thus, Ca2+ plays multifunctional roles during sperm activation in Ascaris suum.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700