用户名: 密码: 验证码:
Pharmacological modulation of autophagy enhances Newcastle disease virus-mediated oncolysis in drug-resistant lung cancer cells
详细信息    查看全文
  • 作者:Ke Jiang (1)
    Yingchun Li (2)
    Qiumin Zhu (3)
    Jiansheng Xu (4)
    Yupeng Wang (1)
    Wuguo Deng (1)
    Quentin Liu (1)
    Guirong Zhang (2)
    Songshu Meng (1)

    1. Institute of Cancer Stem Cell
    ; Dalian Medical University Cancer Center ; 9 Lvshun Road South ; Dalian ; 116044 ; China
    2. Biotherapy Research Center
    ; Liaoning Cancer Hospital & Institute ; 44 Xiaoheyan Road ; Shenyang ; 110042 ; China
    3. Dalian Central Hospital
    ; 826 Southwest Road ; Dalian ; 116033 ; China
    4. Ministry of Education Key Lab for Avian Preventive Medicine
    ; College of Veterinary Medicine ; Yangzhou University ; 48 Wenhuidong Road ; Yangzhou ; 225009 ; China
  • 关键词:Newcastle disease virus ; Autophagy ; Apoptosis ; Drug resistance ; Lung cancer ; Virotherapy
  • 刊名:BMC Cancer
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:2,702 KB
  • 参考文献:1. Brozovic, A, Osmak, M (2007) Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatin-resistance. Cancer Lett 251: pp. 1-16 CrossRef
    2. Hsu, DS, Balakumaran, BS, Acharya, CR, Vlahovic, V, Walters, KS, Garman, K, Anders, C, Riedel, RF, Lancaster, J, Harpole, D, Dressman, HK, Nevins, JR, Febbo, PG, Potti, A (2007) Pharmacogenomic strategies provide a rational approach to the treatment of cisplatin-resistant patients with advanced cancer. J Clin Oncol 25: pp. 4350-4357 CrossRef
    3. Beljanski, V, Hiscott, J (2012) The use of oncolytic viruses to overcome lung cancer drug resistance. Curr Opin Virol 2: pp. 629-635 CrossRef
    4. Meng, S, Zhou, Z, Chen, F, Kong, X, Liu, H, Jiang, K, Liu, W, Hu, M, Zhang, X, Ding, C, Wu, Y (2012) Newcastle disease virus induces apoptosis in cisplatin-resistant human lung adenocarcinoma A549 cells in vitro and in vivo. Cancer Lett 317: pp. 56-64 CrossRef
    5. Reichard, KW, Lorence, RM, Cascino, CJ, Peeples, ME, Walter, RJ, Fernando, MB, Reyes, HM, Greager, JA (1992) Newcastle disease virus selectively kills human tumor cells. J Surg Res 52: pp. 448-453 CrossRef
    6. Schirrmacher, V, Bai, L, Umansky, V, Yu, L, Xing, Y, Qian, Z (2000) Newcastle disease virus activates macrophages for anti-tumor activity. Int J Oncol 16: pp. 363-373
    7. Phuangsab, A, Lorence, RM, Reichard, KW, Peeples, ME, Walter, RJ (2001) Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration. Cancer Lett 172: pp. 27-36 CrossRef
    8. Bian, J, Wang, K, Kong, X, Liu, H, Chen, F, Hu, M, Zhang, X, Jiao, X, Ge, B, Wu, Y, Meng, S (2011) Caspase- and p38-MAPK-dependent induction of apoptosis in A549 lung cancer cells by Newcastle disease virus. Arch Virol 156: pp. 1335-1344 CrossRef
    9. Wu, Y, Zhang, X, Wang, X, Wang, L, Hu, S, Liu, X, Meng, S (2012) Apoptin enhances the oncolytic properties of Newcastle disease virus. Intervirology 55: pp. 276-286 CrossRef
    10. Yaacov, B, Eliahoo, E, Lazar, I, Ben-Shlomo, M, Greenbaum, I, Panet, A, Zakay-Rones, Z (2008) Selective oncolytic effect of an attenuated Newcastle disease virus (NDV-HUJ) in lung tumors. Cancer Gene Ther 15: pp. 795-807 CrossRef
    11. Yaacov, B, Lazar, I, Tayeb, S, Frank, S, Izhar, U, Lotem, M, Perlman, R, Ben-Yehuda, D, Zakay-Rones, Z, Panet, A (2012) Extracellular matrix constituents interfere with Newcastle disease virus spread in solid tissue and diminish its potential oncolytic activity. J Gen Virol 93: pp. 1664-1672 CrossRef
    12. Lazar, I, Yaacov, B, Shiloach, T, Eliahoo, E, Kadouri, L, Lotem, M, Perlman, R, Zakay-Rones, Z, Panet, A, Ben-Yehuda, D (2010) The oncolytic activity of Newcastle disease virus NDV-HUJ on chemoresistant primary melanoma cells is dependent on the proapoptotic activity of the inhibitor of apoptosis protein Livin. J Virol 84: pp. 639-646 CrossRef
    13. Mansour, M, Palese, P, Zamarin, D (2011) Oncolytic specificity of Newcastle disease virus is mediated by selectivity for apoptosis-resistant cells. J Virol 85: pp. 6015-6023 CrossRef
    14. Szeberenyi, J, Fabian, Z, Torocsik, B, Kiss, K, Csatary, LK (2003) Newcastle disease virus-induced apoptosis in PC12 pheochromocytoma cells. Am J Ther 10: pp. 282-288 CrossRef
    15. Elankumaran, S, Rockemann, D, Samal, SK (2006) Newcastle disease virus exerts oncolysis by both intrinsic and extrinsic caspase-dependent pathways of cell death. J Virol 80: pp. 7522-7534 CrossRef
    16. Fabian, Z, Csatary, CM, Szeberenyi, J, Csatary, LK (2007) p53-independent endoplasmic reticulum stress-mediated cytotoxicity of a Newcastle disease virus strain in tumor cell lines. J Virol 81: pp. 2817-2830 CrossRef
    17. Meng, C, Zhou, Z, Jiang, K, Yu, S, Jia, L, Wu, Y, Liu, Y, Meng, S, Ding, C (2012) Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication. Arch Virol 157: pp. 1011-1018 CrossRef
    18. Xie, Z, Klionsky, DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9: pp. 1102-1109 CrossRef
    19. Kraft, C, Martens, S (2012) Mechanisms and regulation of autophagosome formation. Curr Opin Cell Biol 24: pp. 496-501 CrossRef
    20. Kroemer, G, Marino, G, Levine, B (2010) Autophagy and the integrated stress response. Mol Cell 40: pp. 280-293 CrossRef
    21. Glick, D, Barth, S, Macleod, KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221: pp. 3-12 CrossRef
    22. Meng, S, Xu, J, Wu, Y, Ding, C (2013) Targeting autophagy to enhance oncolytic virus-based cancer therapy. Expert Opin Biol Ther 13: pp. 863-873 CrossRef
    23. Rodriguez-Rocha, H, Gomez-Gutierrez, JG, Garcia-Garcia, A, Rao, XM, Chen, L, McMasters, KM, Zhou, HS (2011) Adenoviruses induce autophagy to promote virus replication and oncolysis. Virology 416: pp. 9-15 CrossRef
    24. Jiang, H, White, EJ, Rios-Vicil, CI, Xu, J, Gomez-Manzano, C, Fueyo, J (2011) Human adenovirus type 5 induces cell lysis through autophagy and autophagy-triggered caspase activity. J Virol 85: pp. 4720-4729 CrossRef
    25. Yokoyama, T, Iwado, E, Kondo, Y, Aoki, H, Hayashi, Y, Georgescu, MM, Sawaya, R, Hess, KR, Mills, GB, Kawamura, H, Hashimoto, Y, Urata, Y, Fujiwara, T, Kondo, S (2008) Autophagy-inducing agents augment the antitumor effect of telerase-selve oncolytic adenovirus OBP-405 on glioblastoma cells. Gene Ther 15: pp. 1233-1239 CrossRef
    26. Botta, G, Passaro, C, Libertini, S, Abagnale, A, Barbato, S, Maione, AS, Hallden, G, Beguinot, F, Formisano, P, Portella, G (2012) Inhibition of autophagy enhances the effects of E1A-defective oncolytic adenovirus dl922-947 against glioma cells in vitro and in vivo. Hum Gene Ther 23: pp. 623-634 CrossRef
    27. Cheng, PH, Lian, S, Zhao, R, Rao, XM, McMasters, KM, Zhou, HS (2013) Combination of autophagy inducer rapamycin and oncolytic adenovirus improves antitumor effect in cancer cells. Virol J 10: pp. 293 CrossRef
    28. Bartlett, DL, Liu, Z, Sathaiah, M, Ravindranathan, R, Guo, Z, He, Y, Guo, ZS (2013) Oncolytic viruses as therapeutic cancer vaccines. Mol Cancer 12: pp. 103 CrossRef
    29. Guo, ZS, Liu, Z, Bartlett, DL (2014) Oncolytic Immunotherapy: Dying the Right Way is a Key to Eliciting Potent Antitumor Immunity. Front Oncol 4: pp. 74 CrossRef
    30. Liikanen, I, Ahtiainen, L, Hirvinen, ML, Bramante, S, Cerullo, V, Nokisalmi, P, Hemminki, O, Diaconu, I, Pesonen, S, Koski, A, Kangasniemi, L, Pesonen, SK, Oksanen, M, Laasonen, L, Partanen, K, Joensuu, T, Zhao, F, Kanerva, A, Hemminki, A (2013) Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients. Mol Ther 21: pp. 1212-1223 CrossRef
    31. Jiang, ZK, Johnson, M, Moughon, DL, Kuo, J, Sato, M, Wu, L (2013) Rapamycin enhances adenovirus-mediated cancer imaging and therapy in pre-immunized murine hosts. PLoS One 8: pp. e73650 CrossRef
    32. Kim, EH, Min, HY, Chung, HJ, Song, J, Park, HJ, Kim, S, Lee, SK (2012) Anti-proliferative activity and suppression of P-glycoprotein by (鈭?-antofine, a natural phenanthroindolizidine alkaloid, in paclitaxel-resistant human lung cancer cells. Food Chem Toxicol 50: pp. 1060-1065 CrossRef
    33. Zou, Z, Yuan, Z, Zhang, Q, Long, Z, Chen, J, Tang, Z, Zhu, Y, Chen, S, Xu, J, Yan, M, Wang, J, Liu, Q (2012) Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy 8: pp. 1798-1810 CrossRef
    34. Shingu, T, Chumbalkar, VC, Gwak, HS, Fujiwara, K, Kondo, S, Farrell, NP, Bogler, O (2010) The polynuclear platinum BBR3610 induces G2/M arrest and autophagy early and apoptosis late in glioma cells. Neuro Oncol 12: pp. 1269-1277
    35. Sun, Y, Yu, S, Ding, N, Meng, C, Meng, S, Zhang, S, Zhan, Y, Qiu, X, Tan, L, Chen, H, Song, C, Ding, C (2014) Autophagy benefits the replication of Newcastle disease virus in chicken cells and tissues. J Virol 88: pp. 525-537 CrossRef
    36. Chen, L, Meng, S, Wang, H, Bali, P, Bai, W, Li, B, Atadja, P, Bhalla, KN, Wu, J (2005) Chemical ablation of androgen receptor in prostate cancer cells by the histone deacetylase inhibitor LAQ824. Mol Cancer Ther 4: pp. 1311-1319 CrossRef
    37. Kabeya, Y, Mizushima, N, Ueno, T, Yamamoto, A, Kirisako, T, Noda, T, Kominami, E, Ohsumi, Y, Yoshimori, T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: pp. 5720-5728 CrossRef
    38. Ren, JH, He, WS, Nong, L, Zhu, QY, Hu, K, Zhang, RG, Huang, LL, Zhu, F, Wu, G (2010) Acquired cisplatin resistance in human lung adenocarcinoma cells is associated with enhanced autophagy. Cancer Biother Radiopharm 25: pp. 75-80 CrossRef
    39. Yue, Z, Jin, S, Yang, C, Levine, AJ, Heintz, N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100: pp. 15077-15082 CrossRef
    40. Alonso, MM, Jiang, H, Yokoyama, T, Xu, J, Bekele, NB, Lang, FF, Kondo, S, Gomez-Manzano, C, Fueyo, J (2008) Delta-24-RGD in combination with RAD001 induces enhanced anti-glioma effect via autophagic cell death. Mol Ther 16: pp. 487-493 CrossRef
    41. Lun, XQ, Jang, JH, Tang, N, Deng, H, Head, R, Bell, JC, Stojdl, DF, Nutt, CL, Senger, DL, Forsyth, PA, McCart, JA (2009) Efficacy of systemically administered oncolytic vaccinia virotherapy for malignant gliomas is enhanced by combination therapy with rapamycin or cyclophosphamide. Clin Cancer Res 15: pp. 2777-2788 CrossRef
    42. Lun, X, Alain, T, Zemp, FJ, Zhou, H, Rahman, MM, Hamilton, MG, McFadden, G, Bell, J, Senger, DL, Forsyth, PA (2010) Myxoma virus virotherapy for glioma in immunocompetent animal models: optimizing administration routes and synergy with rapamycin. Cancer Res 70: pp. 598-608 CrossRef
    43. Boya, P, Gonzalez-Polo, RA, Casares, N, Perfettini, JL, Dessen, P, Larochette, N, Metivier, D, Meley, D, Souquere, S, Yoshimori, T, Pierron, G, Codogno, P, Kroemer, G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25: pp. 1025-1040 CrossRef
    44. Amaravadi, RK, Yu, D, Lum, JJ, Bui, T, Christophorou, MA, Evan, GI, Thomas-Tikhonenko, A, Thompson, CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117: pp. 326-336 CrossRef
    45. Enzenmuller, S, Gonzalez, P, Debatin, KM, Fulda, S (2013) Chloroquine overcomes resistance of lung carcinoma cells to the dual PI3K/mTOR inhibitor PI103 by lysosome-mediated apoptosis. Anticancer Drugs 24: pp. 14-19 CrossRef
    46. Ji, C, Zhang, L, Cheng, Y, Patel, R, Wu, H, Zhang, Y, Wang, M, Ji, S, Belani, CP, Yang, JM, Ren, X (2014) Induction of autophagy contributes to crizotinib resistance in ALK-positive lung cancer. Cancer Biol Ther 15: pp. 570-577 CrossRef
    47. Waqar, SN, Gopalan, PK, Williams, K, Devarakonda, S, Govindan, R (2013) A phase I trial of sunitinib and rapamycin in patients with advanced non-small cell lung cancer. Chemotherapy 59: pp. 8-13 CrossRef
    48. Chaabane, W, User, SD, El-Gazzah, M, Jaksik, R, Sajjadi, E, Rzeszowska-Wolny, J, Los, MJ (2013) Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp (Warsz) 61: pp. 43-58 CrossRef
    49. Jain, MV, Paczulla, AM, Klonisch, T, Dimgba, FN, Rao, SB, Roberg, K, Schweizer, F, Lengerke, C, Davoodpour, P, Palicharla, VR, Maddika, S, Los, M (2013) Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med 17: pp. 12-29 CrossRef
    50. Alain, T, Lun, X, Martineau, Y, Sean, P, Pulendran, B, Petroulakis, E, Zemp, FJ, Lemay, CG, Roy, D, Bell, JC, Thomas, G, Kozma, SC, Forsyth, PA, Costa-Mattioli, M, Sonenberg, N (2010) Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production. Proc Natl Acad Sci U S A 107: pp. 1576-1581 CrossRef
    51. Thomas, DL, Doty, R, Tosic, V, Liu, J, Kranz, DM, McFadden, G, Macneill, AL, Roy, EJ (2011) Myxoma virus combined with rapamycin treatment enhances adoptive T cell therapy for murine melanoma brain tumors. Cancer Immunol Immunother 60: pp. 1461-1472 CrossRef
    52. Yu, H, Su, J, Xu, Y, Kang, J, Li, H, Zhang, L, Yi, H, Xiang, X, Liu, F, Sun, L (2011) p62/SQSTM1 involved in cisplatin resistance in human ovarian cancer cells by clearing ubiquitinated proteins. Eur J Cancer 47: pp. 1585-1594 CrossRef
    53. Ajabnoor, GM, Crook, T, Coley, HM (2012) Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death Dis 3: pp. e260 CrossRef
    54. Veldhoen, RA, Banman, SL, Hemmerling, DR, Odsen, R, Simmen, T, Simmonds, AJ, Underhill, DA, Goping, IS (2013) The chemotherapeutic agent paclitaxel inhibits autophagy through two distinct mechanisms that regulate apoptosis. Oncogene 32: pp. 736-746 CrossRef
    55. Bertolini, G, Roz, L, Perego, P, Tortoreto, M, Fontanella, E, Gatti, L, Pratesi, G, Fabbri, A, Andriani, F, Tinelli, S, Roz, E, Caserini, R, Lo Vullo, S, Camerini, T, Mariani, L, Delia, D, Calabro, E, Pastorino, U, Sozzi, G (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A 106: pp. 16281-16286 CrossRef
    56. Barr, MP, Gray, SG, Hoffmann, AC, Hilger, RA, Thomale, J, O'Flaherty, JD, Fennell, DA, Richard, D, O'Leary, JJ, O'Byrne, KJ (2013) Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature. PLoS One 8: pp. e54193 CrossRef
    57. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/14/551/prepub
  • 刊物主题:Cancer Research; Oncology; Stem Cells; Animal Models; Internal Medicine;
  • 出版者:BioMed Central
  • ISSN:1471-2407
文摘
Background Oncolytic viruses represent a promising therapy against cancers with acquired drug resistance. However, low efficacy limits its clinical application. The objective of this study is to investigate whether pharmacologically modulating autophagy could enhance oncolytic Newcastle disease virus (NDV) strain NDV/FMW virotherapy of drug-resistant lung cancer cells. Methods The effect of NDV/FMW infection on autophagy machinery in A549 lung cancer cell lines resistant to cisplatin (A549/DDP) or paclitaxel (A549/PTX) was investigated by detection of GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3) puncta, formation of double-membrane vesicles and conversion of the nonlipidated form of LC3 (LC3-I) to the phosphatidylethanolamine-conjugated form (LC3-II). The effects of autophagy inhibitor chloroquine (CQ) and autophagy inducer rapamycin on NDV/FMW-mediated antitumor activity were evaluated both in culture cells and in mice bearing drug-resistant lung cancer cells. Results We show that NDV/FMW triggers autophagy in A549/PTX cells via dampening the class I PI3K/Akt/mTOR/p70S6K pathway, which inhibits autophagy. On the contrary, NDV/FMW infection attenuates the autophagic process in A549/DDP cells through the activation of the negative regulatory pathway. Furthermore, combination with CQ or knockdown of ATG5 significantly enhances NDV/FMW-mediated antitumor effects on A549/DDP cells, while the oncolytic efficacy of NDV/FMW in A549/PTX cells is significantly improved by rapamycin. Interestingly, autophagy modulation does not increase virus progeny in these drug resistant cells. Importantly, CQ or rapamycin significantly potentiates NDV/FMW oncolytic activity in mice bearing A549/DDP or A549/PTX cells respectively. Conclusions These results demonstrate that combination treatment with autophagy modulators is an effective strategy to augment the therapeutic activity of NDV/FMW against drug-resistant lung cancers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700