用户名: 密码: 验证码:
Hollow TiO2᾿em>X porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries
详细信息    查看全文
  • 作者:Chun Wang ; Faxing Wang ; Yujuan Zhao ; Yuhui Li ; Qin Yue ; Yupu Liu ; Yong Liu
  • 关键词:titania ; hydrogenation ; porous wall ; hollow microspheres ; lithium ; ion battery
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:9
  • 期:1
  • 页码:165-173
  • 全文大小:3,408 KB
  • 参考文献:[1]Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171.CrossRef
    [2]Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.CrossRef
    [3]Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.CrossRef
    [4]Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.CrossRef
    [5]Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165–180.CrossRef
    [6]Chen, Z. H.; Qin, Y.; Ren, Y.; Lu, W. Q.; Orendorff, C.; Roth, E. P.; Amine, K. Multi-scale study of thermal stability of lithiated graphite. Energy Environ. Sci. 2011, 4, 4023–4030.CrossRef
    [7]Chen, Z. H.; Belharouak, I.; Sun, Y.-K.; Amine, K. Titaniumbased anode materials for safe lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 959–969.CrossRef
    [8]Zhu, G.-N.; Wang, Y.-G.; Xia, Y.-Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6652–6667.CrossRef
    [9]Yang, Z. G.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D. H.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 2009, 192, 588–598.CrossRef
    [10]Xin, L.; Liu, Y.; Li, B. J.; Zhou, X.; Shen, H.; Zhao, W. X.; Liang, C. L. Constructing hierarchical submicrotubes from interconnected TiO2 nanocrystals for high reversible capacity and long-life lithium-ion batteries. Sci. Rep. 2014, 4, 4479.
    [11]Song, L. H.; Li, L.; Gao, X.; Zhao, J. X.; Lu, T.; Liu, Z. A facile synthesis of a uniform constitution of three-dimensionally ordered macroporous TiO2-carbon nanocomposites with hierarchical pores for lithium ion batteries. J. Mater. Chem. A, 2015, 3, 6862–6872.CrossRef
    [12]Liu, H.; Li, W.; Shen, D. K.; Zhao, D. Y.; Wang, G. X. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 2015, 137, 13161–13166.CrossRef
    [13]Zeng, L. X.; Zheng, C.; Xia, L. C.; Wang, Y. X.; Wei, M. D. Ordered mesoporous TiO2-C nanocomposite as an anode material for long-term performance lithium-ion batteries. J. Mater. Chem. A, 2013, 1, 4293–4299.CrossRef
    [14]Chen, J. S.; Liu, H.; Qiao, S. Z.; Lou, X. W. Carbonsupported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. J. Mater. Chem. 2011, 21, 5687–5692.CrossRef
    [15]Moriguchi, I.; Hidaka, R.; Yamada, H.; Kudo, T.; Murakami, H.; Nakashima, N. A mesoporous nanocomposite of TiO2 and carbon nanotubes as a high-rate Li-intercalation electrode material. Adv. Mater. 2006, 18, 69–73.CrossRef
    [16]Cao, F.-F.; Guo, Y.-G.; Zheng, S.-F.; Wu, X.-L.; Jiang, L.-Y.; Bi, R.-R.; Wan, L.-J.; Maier, J. Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem. Mater. 2010, 22, 1908–1914.CrossRef
    [17]Li, W.; Wang, F.; Feng, S. S.; Wang, J. X.; Sun, Z. K.; Li, B.; Li, Y. H.; Yang, J. P.; Elzatahry, A. A.; Xia, Y. Y. et al. Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. J. Am. Chem. Soc. 2013, 135, 18300–18303.CrossRef
    [18]Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L. L.; Cheng, H.-M. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by templatefree self-assembly. Adv. Funct. Mater. 2011, 21, 1717–1722.CrossRef
    [19]Yang, S. B.; Feng, X. L.; Müllen, K. Sandwich-like, graphenebased titania nanosheets with high surface area for fast lithium storage. Adv. Mater. 2011, 23, 3575–3579.CrossRef
    [20]Wang, D. H.; Choi, D.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G. et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907–914.CrossRef
    [21]Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.CrossRef
    [22]Chen, X. B.; Liu, L.; Huang, F. Q. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885.CrossRef
    [23]Liang, Z.; Zheng, G. Y.; Li, W. Y.; Seh, Z. W.; Yao, H. B.; Yan, K.; Kong, D. S.; Cui, Y. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 2014, 8, 5249–5256.CrossRef
    [24]Jeong, G.; Kim, J.-G.; Park, M.-S.; Seo, M.; Hwang, S. M.; Kim, Y.-U.; Kim, Y.-J.; Kim, J. H.; Dou, S. X. Core–shell structured silicon nanoparticles@TiO2-x /carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. ACS Nano 2014, 8, 2977–2985.CrossRef
    [25]Wang, J.; Shen, L. F.; Nie, P.; Xu, G. Y.; Ding, B.; Fang, S.; Dou, H.; Zhang, X. G. Synthesis of hydrogenated TiO2- reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries. J. Mater. Chem. A, 2014, 2, 9150–9155.CrossRef
    [26]Myung, S.-T.; Kikuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S.-J.; Sun, Y.-K.; Scrosati, B. Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 2013, 6, 2609–2614.CrossRef
    [27]Li, G. C.; Zhang, Z. H.; Peng, H. R.; Chen, K. Z. Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries. RSC Adv. 2013, 3, 11507–11510.CrossRef
    [28]Yan, Y.; Hao, B.; Wang, D.; Chen, G.; Markweg, E.; Albrecht, A.; Schaaf, P. Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. J. Mater. Chem. A, 2013, 1, 14507–14513.CrossRef
    [29]Xia, T.; Zhang, W.; Li, W. J.; Oyler, N. A.; Liu, G.; Chen, X. B. Hydrogenated surface disorder enhances lithium ion battery performance. Nano Energy 2013, 2, 826–835.CrossRef
    [30]Xia, T.; Chen, X. B. Revealing the structural properties of hydrogenated black TiO2 nanocrystals. J. Mater. Chem. A, 2013, 1, 2983–2989.CrossRef
    [31]Lu, Z. G.; Yip, C.-T.; Wang, L. P.; Huang, H. T.; Zhou, L. M. Hydrogenated TiO2 nanotube arrays as high-rate anodes for lithium-ion microbatteries. ChemPlusChem 2012, 77, 991–1000.CrossRef
    [32]Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.CrossRef
    [33]Shin, J.-Y.; Joo, J. H.; Samuelis, D.; Maier, J. Oxygen-deficient TiO2-δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 2012, 24, 543–551.CrossRef
    [34]Tian, Q. H.; Tian, Y.; Zhang, Z. X.; Qiao, C. S.; Yang, L.; Hirano, S.-I. Facile template-free preparation of hierarchical TiO2 hollow microspheres assembled by nanocrystals and their superior cycling performance as anode materials for lithium-ion batteries. J. Mater. Chem. A, 2015, 3, 10829–10836.CrossRef
    [35]Gao, X. H.; Li, G. R.; Xu, Y. Y.; Hong, Z. L.; Liang, C. D.; Lin, Z. TiO2 microboxes with controlled internal porosity for high-performance lithium storage. Angew. Chem., Int. Ed. 2015, 54, 14331–14335.CrossRef
    [36]Tang, Y. X.; Zhang, Y. Y.; Deng, J. Y.; Wei, J. Q.; Le Tam, H.; Chandran, B. K.; Dong, Z. L.; Chen, Z.; Chen, X. D. Mechanical force-driven growth of elongated bending TiO2-based nanotubular materials for ultrafast rechargeable lithium ion batteries. Adv. Mater. 2014, 26, 6111–6118.CrossRef
    [37]Zhang, G. Q.; Wu, H. B.; Song, T.; Paik, U.; Lou, X. W. TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. Angew. Chem., Int. Ed. 2014, 53, 12590–12593.
    [38]Xiao, L.; Cao, M. L.; Mei, D. D.; Guo, Y. L.; Yao, L. F.; Qu, D. Y.; Deng, B. H. Preparation and electrochemical lithium storage features of TiO2 hollow spheres. J. Power Sources 2013, 238, 197–202.CrossRef
    [39]Wang, Z. Y.; Lou, X. W. TiO2 nanocages: Fast synthesis, interior functionalization and improved lithium storage properties. Adv. Mater. 2012, 24, 4124–4129.CrossRef
    [40]Ming, J.; Wu, Y. Q.; Nagarajan, S.; Lee, D.-J.; Sun, Y.-K.; Zhao, F. Y. Fine control of titania deposition to prepare C@TiO2 composites and TiO2 hollow particles for photocatalysis and lithium-ion battery applications. J. Mater. Chem. 2012, 22, 22135–22141.CrossRef
    [41]Wang, J. P.; Bai, Y.; Wu, M. Y.; Yin, J.; Zhang, W. F. Preparation and electrochemical properties of TiO2 hollow spheres as an anode material for lithium-ion batteries. J. Power Sources 2009, 191, 614–618.CrossRef
    [42]Wang, Y.; Su, X. W.; Lu, S. Shape-controlled synthesis of TiO2 hollow structures and their application in lithium batteries. J. Mater. Chem. 2012, 22, 1969–1976.CrossRef
    [43]Yu, X.-Y.; Wu, H. B.; Yu, L.; Ma, F.-X.; Lou, X. W. Rutile TiO2 submicroboxes with superior lithium storage properties. Angew. Chem., Int. Ed. 2015, 54, 4001–4004.CrossRef
    [44]Hu, H.; Yu, L.; Gao, X. H.; Lin, Z.; Lou, X. W. Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage. Energy Environ. Sci. 2015, 8, 1480–1483.CrossRef
    [45]Liu, J.; Qiao, S. Z.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D. Y.; Lu, G. Q. Extension of the stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew. Chem., Int. Ed. 2011, 50, 5947–5951.CrossRef
    [46]Li, W.; Yang, J. P.; Wu, Z. X.; Wang, J. X.; Li, B.; Feng, S. S.; Deng, Y. H.; Zhang, F.; Zhao, D. Y. A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core–shell structures. J. Am. Chem. Soc. 2012, 134, 11864–11867.CrossRef
    [47]Li, W.; Liu, M. B.; Feng, S. S.; Li, X. M.; Wang, J. X.; Shen, D. K.; Li, Y. H.; Sun, Z. K.; Elzatahry, A. A.; Lu, H. J. et al. Template-free synthesis of uniform magnetic mesoporous TiO2 nanospindles for highly selective enrichment of phosphopeptides. Mater. Horiz. 2014, 1, 439–445.CrossRef
    [48]Wang, C.; Chen, J. C.; Zhou, X. R.; Li, W.; Liu, Y.; Yue, Q.; Xue, Z. T.; Li, Y. H.; Elzatahry, A. A.; Deng, Y. H. et al. Magnetic yolk–shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. Nano Res. 2015, 8, 238–245.CrossRef
    [49]Joo, J. B.; Zhang, Q.; Lee, I.; Dahl, M.; Zaera, F.; Yin, Y. D. Mesoporous anatase titania hollow nanostructures though silica-protected calcination. Adv. Funct. Mater. 2012, 22, 166–174.CrossRef
    [50]Zhang, J. Y.; Deng, Y. H.; Gu, D.; Wang, S. T.; She, L.; Che, R. C.; Wang, Z.-S.; Tu, B.; Xie, S. H.; Zhao, D. Y. Ligand-assisted assembly approach to synthesize large-pore ordered mesoporous titania with thermally stable and crystalline framework. Adv. Energy Mater. 2011, 1, 241–248.CrossRef
    [51]Lee, J.; Orilall, M. C.; Warren, S. C.; Kamperman, M.; DiSalvo, F. J.; Wiesner, U. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater. 2008, 7, 222–228.CrossRef
    [52]Liu, H. Y.; Joo, J. B.; Dahl, M.; Fu, L. S.; Zeng, Z. Z.; Yin, Y. D. Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity. Energy Environ. Sci. 2015, 8, 286–296.CrossRef
    [53]Kim, G.; Jo, C.; Kim, W.; Chun, J.; Yoon, S.; Lee, J.; Choi, W. TiO2 nanodisks designed for Li-ion batteries: A novel strategy for obtaining an ultrathin and high surface area anode material at the ice interface. Energy Environ. Sci. 2013, 6, 2932–2938.CrossRef
  • 作者单位:Chun Wang (1)
    Faxing Wang (1)
    Yujuan Zhao (1)
    Yuhui Li (1)
    Qin Yue (1)
    Yupu Liu (1)
    Yong Liu (1)
    Ahmed A. Elzatahry (2)
    Abdullah Al-Enizi (3)
    Yuping Wu (1)
    Yonghui Deng (1)
    Dongyuan Zhao (1)

    1. Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
    2. Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
    3. Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Hollow TiO2–X porous microspheres consisted of numerous well-crystalline nanocrystals with superior structural integrity and robust hollow interior were synthesized by a facile sol-gel template-assisted approach and two-step carbonprotected calcination method, together with hydrogenation treatment. They exhibit a uniform diameter of ~470 nm with a thin porous wall shell of ~50 nm in thickness. The Brunauer-Emmett-Teller (BET) surface area and pore volume are ~19 m2/g and 0.07 cm3/g, respectively. These hollow TiO2–X porous microspheres demonstrated excellent lithium storage performance with stable capacity retention for over 300 cycles (a high capacity of 151 mAh/g can be obtained up to 300 cycles at 1 C, retaining 81.6% of the initial capacity of 185 mAh/g) and enhanced rate capability even up to 10 C (222, 192, 121, and 92.1 mAh/g at current rates of 0.5, 1, 5, and 10 C, respectively). The intrinsic increased conductivity of the hydrogenated TiO2 microspheres and their robust hollow structure beneficial for lithium ion-electron diffusion and mitigating the structural strain synergistically contribute to the remarkable improvements in their cycling stability and rate performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700