用户名: 密码: 验证码:
Functionalization of PCL fibrous membrane with RGD peptide by a naturally occurring condensation reaction
详细信息    查看全文
  • 作者:Wenting Zheng (1)
    Di Guan (1)
    Yuxin Teng (1) (2)
    Zhihong Wang (1)
    Suai Zhang (1)
    Lianyong Wang (1) (3)
    Deling Kong (1)
    Jun Zhang (1) (3)
  • 关键词:Poly (ε ; caprolactone) (PCL) ; 2 ; Cyanobenzothiazole ; Surface modification ; RGD
  • 刊名:Chinese Science Bulletin
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:59
  • 期:22
  • 页码:2776-2784
  • 全文大小:4,247 KB
  • 参考文献:1. Allen AL, Shalaby SW (1994) Biomedical polymers: designed-to-degrade systems. Hanser/Gardner Publications, Cincinnati
    2. Vert M, Mauduit J, Li S (1994) Biodegradation of pla/ga polymers: Increasing complexity. Biomaterials 15:1209-213 CrossRef
    3. Atala A, Mooney DJ (1997) Synthetic biodegradable polymer scaffolds. Springer, New York
    4. Zhu Y, Gao C, Liu X et al (2002) Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules 3:1312-319 CrossRef
    5. Zhu YB, Gao CY, Shen JC (2002) Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. Biomaterials 23:4889-895 CrossRef
    6. Sarasam A, Madihally SV (2005) Characterization of chitosan-polycaprolactone blends for tissue engineering applications. Biomaterials 26:5500-508 CrossRef
    7. Santiago LY, Nowak RW, Rubin JP et al (2006) Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials 27:2962-969 CrossRef
    8. Meinhart JG, Schense JC, Schima H et al (2005) Enhanced endothelial cell retention on shear-stressed synthetic vascular grafts precoated with RGD-cross-linked fibrin. Tissue Eng 11:887-95 CrossRef
    9. Larsen CC, Kligman F, Kottke-Marchant K et al (2006) The effect of RGD fluorosurfactant polymer modification of ePTFE on endothelial cell adhesion, growth, and function. Biomaterials 27:4846-855 CrossRef
    10. Comisar WA, Kazmers NH, Mooney DJ et al (2007) Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: a combined computational and experimental approach. Biomaterials 28:4409-417 CrossRef
    11. Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385-415 CrossRef
    12. Barrera DA, Zylstra E Jr, Lansbury PT et al (1993) Synthesis and RGD peptide modification of a new biodegradable copolymer: poly(lactic acid-co-lysine). J Am Chem Soc 115:11010-1011 CrossRef
    13. Cook AD, Hrkach JS, Gao NN et al (1997) Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res 35:513-23 CrossRef
    14. Yamaoka T, Hotta Y, Kobayashi K et al (1999) Synthesis and properties of malic acid-containing functional polymers. Int J Biol Macromol 25:265-71 CrossRef
    15. Xu FJ, Wang ZH, Yang WT (2010) Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules. Biomaterials 31:3139-147 CrossRef
    16. Tugulu S, Silacci P, Stergiopulos N et al (2007) RGD-functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cells. Biomaterials 28:2536-546 CrossRef
    17. Marletta G, Ciapetti G, Satriano C et al (2005) The effect of irradiation modification and RGD sequence adsorption on the response of human osteoblasts to polycaprolactone. Biomaterials 26:4793-804 CrossRef
    18. Ren H, Xiao F, Zhan K et al (2009) A biocompatible condensation reaction for the labeling of terminal cysteine residues on proteins. Angew Chem Int Ed Engl 48:9658-662 CrossRef
    19. Liang G, Ren H, Rao J (2010) A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat Chem 2:54-0 CrossRef
    20. Wang P, Zhang CJ, Chen GC et al (2013) Site-specific immobilization of biomolecules by a biocompatible reaction between terminal cysteine and 2-cyanobenzothiazole. Chem Commun 49:8644-646 CrossRef
    21. Zhang M, Wang Z, Feng S et al (2011) Immobilization of anti-cd31 antibody on electrospun poly(varepsilon-caprolactone) scaffolds through hydrophobins for specific adhesion of endothelial cells. Colloids Surf B Biointerfaces 85:32-9 CrossRef
    22. Tuchscherer G (1993) Template assembled synthetic proteins: Condensation of a multifunktional peptide to a topological template via chemoselective ligation. Tetrahedron Lett 34:13 CrossRef
    23. Wahl F, Mutter M (1996) Analogues of oxytocin with an oxime bridge using chemoselectively addressable building blocks. Tetrahedron Lett 37:4 CrossRef
    24. Elbert DL, Hubbell JA (2001) Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2:430-41 CrossRef
    25. Lateef SS, Boateng S, Hartman TJ et al (2002) Grgdsp peptide-bound silicone membranes withstand mechanical flexing / in vitro and display enhanced fibroblast adhesion. Biomaterials 23:3159-168 CrossRef
    26. Seliger HH, Mc EW, White EH et al (1961) Stereo-specificity and firefly bioluminescence, a comparison of natural and synthetic luciferins. Proc Natl Acad Sci USA 47:1129-134 CrossRef
    27. Zhu Y, Mao ZW, Gao CY (2013) Aminolysis-based surface modification of polyesters for biomedical applications. RSC Adv 3:2509-519 CrossRef
    28. Zhu Y, Mao ZW, Gao CY (2013) Control over the gradient differentiation of rat BMSCs on a PCL membrane with surface-immobilized alendronate gradient. Biomacromolecules 14:342-49 CrossRef
    29. Zhu Y, Mao ZW, Shi HY et al (2012) In-depth study on aminolysis of poly(ε-caprolactone): back to the fundamentals. Sci China Chem 55:2419-427 CrossRef
    30. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491-97 CrossRef
    31. Chollet C, Chanseau C, Remy M et al (2009) The effect of RGD density on osteoblast and endothelial cell behavior on RGD-grafted polyethylene terephthalate surfaces. Biomaterials 30:711-20 CrossRef
    32. Kim CH, Khil MS, Kim HY et al (2006) An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomed Mater Res B 78:283-90 CrossRef
    33. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028-032 CrossRef
    34. Ma Z, He W, Yong T et al (2005) Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng 11:1149-158 CrossRef
    35. Patel S, Kurpinski K, Quigley R et al (2007) Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett 7:2122-128 CrossRef
    36. Zhang YZ (2006) Fabrication of porous electrospun nanofibers. Nanotechnology 17:8 CrossRef
    37. Koh HS, Yong T, Chan CK et al (2008) Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 29:3574-582 CrossRef
  • 作者单位:Wenting Zheng (1)
    Di Guan (1)
    Yuxin Teng (1) (2)
    Zhihong Wang (1)
    Suai Zhang (1)
    Lianyong Wang (1) (3)
    Deling Kong (1)
    Jun Zhang (1) (3)

    1. Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
    2. Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
    3. Institute of Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
  • ISSN:1861-9541
文摘
Poly(ε-caprolactone) (PCL) is widely adopted as an ingredient for tissue engineering scaffolds. To improve its cell affinity, in this study, we developed a new method to introduce bioactive RGD peptides onto the surface of PCL via condensation reaction between 2-cyanobenzothiazole (CBT) and D-cysteine. The PCL fibrous membranes were prepared by electrospinning, and RGD functionalization was characterized by fluorescence microscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA). As expected, our results demonstrated the successful RGD immobilization on the surface of PCL. RGD modification improved the hydrophilicity of PCL, changing their WCA from 112.20° to 38.35°. Cell adhesion, spreading and proliferation of 3T3 fibroblasts were also enhanced. We therefore believe that the methods reported in this study was facile and effective for functional modification of the hydrophobic PCL scaffolds. The moderate reaction conditions are also suitable for covalent immobilization of bioactive molecules onto PCL.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700