用户名: 密码: 验证码:
Molecular basis for calculating the surface tension of binary droplets
详细信息    查看全文
文摘
A procedure for calculating the surface tension of droplets consisting of two components in the vapor phase is considered. The calculations are performed using the lattice gas model in the quasi-chemical approximation with allowance for the correlation effects of the nearest interacting molecules. A layered model of the structure of a vapor–liquid interface is used. Ways of calculating the surface tension of droplets with different radii are considered. They are based on different thermodynamic definitions of reference surfaces. Typical dependences of the surface tension of metastable and equilibrium droplets on the droplets’ radii are analyzed for four types of phase diagram. It is found that if the energy of interaction between the components of one type exceeds by 150% the energies of interaction between components of another type and between particles of different types, and if the component with the highest energy of interaction predominates in a droplet, this results in a nonmonotonic profile of the component with the lowest energy of interaction in the region of transition. Mixture components are distributed in the region of transition such that the component with the highest energy of interaction is concentrated on the liquid side and the other component is concentrated on the vapor side. The surface tension of equilibrium droplets is less than that of metastable droplets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700